R. Stevens and T. Miyashita, “Review of standards for microlenses and microlens arrays,” Imaging Sci. J. 58(4), 202–212 (2010).
[Crossref]
D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]
K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt. 49(11), 1997–2005 (2010).
[Crossref]
[PubMed]
G. Druart, J. Taboury, N. Guérineau, R. Haïdar, H. Sauer, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33(4), 366–368 (2008).
[Crossref]
[PubMed]
D. Feng, P. Ou, L. S. Feng, S. L. Hu, and C. X. Zhang, “Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution,” Opt. Express 16(25), 20968–20973 (2008).
[Crossref]
[PubMed]
D. Feng, Y. B. Yan, G. F. Jin, and S. S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239(4-6), 345–352 (2004).
[Crossref]
M. S. Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A, Pure Appl. Opt. 4(5), S119–S124 (2002).
[Crossref]
J. S. Ye, B. Z. Dong, B. Y. Gu, G. Z. Yang, and S. T. Liu, “Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory,” J. Opt. Soc. Am. A 19(10), 2030–2035 (2002).
[Crossref]
P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
[Crossref]
J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory,” J. Opt. Soc. Am. A 16(5), 1157–1167 (1999).
[Crossref]
P. Lalanne, “Waveguiding in blazed-binary diffractive elements,” J. Opt. Soc. Am. A 16(10), 2517–2520 (1999).
[Crossref]
M. W. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31(22), 4453–4458 (1992).
[Crossref]
[PubMed]
J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
[Crossref]
[PubMed]
J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17(1), 7–9 (1992).
[Crossref]
[PubMed]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]
J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17(1), 7–9 (1992).
[Crossref]
[PubMed]
J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
[Crossref]
[PubMed]
M. S. Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A, Pure Appl. Opt. 4(5), S119–S124 (2002).
[Crossref]
P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
[Crossref]
M. S. Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A, Pure Appl. Opt. 4(5), S119–S124 (2002).
[Crossref]
P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
[Crossref]
D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]
M. S. Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A, Pure Appl. Opt. 4(5), S119–S124 (2002).
[Crossref]
J. S. Ye, B. Z. Dong, B. Y. Gu, G. Z. Yang, and S. T. Liu, “Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory,” J. Opt. Soc. Am. A 19(10), 2030–2035 (2002).
[Crossref]
B. Z. Dong, J. Liu, B. Y. Gu, G. Z. Yang, and J. Wang, “Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 18(7), 1465–1470 (2001).
[Crossref]
D. Feng, Y. B. Yan, G. F. Jin, and S. S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239(4-6), 345–352 (2004).
[Crossref]
D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]
D. Feng, P. Ou, L. S. Feng, S. L. Hu, and C. X. Zhang, “Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution,” Opt. Express 16(25), 20968–20973 (2008).
[Crossref]
[PubMed]
D. Feng, Y. B. Yan, G. F. Jin, and S. S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239(4-6), 345–352 (2004).
[Crossref]
J. S. Ye, B. Z. Dong, B. Y. Gu, G. Z. Yang, and S. T. Liu, “Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory,” J. Opt. Soc. Am. A 19(10), 2030–2035 (2002).
[Crossref]
B. Z. Dong, J. Liu, B. Y. Gu, G. Z. Yang, and J. Wang, “Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 18(7), 1465–1470 (2001).
[Crossref]
J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17(1), 7–9 (1992).
[Crossref]
[PubMed]
J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
[Crossref]
[PubMed]
D. Feng, Y. B. Yan, G. F. Jin, and S. S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239(4-6), 345–352 (2004).
[Crossref]
J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17(1), 7–9 (1992).
[Crossref]
[PubMed]
J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
[Crossref]
[PubMed]
M. S. Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A, Pure Appl. Opt. 4(5), S119–S124 (2002).
[Crossref]
P. Lalanne, “Waveguiding in blazed-binary diffractive elements,” J. Opt. Soc. Am. A 16(10), 2517–2520 (1999).
[Crossref]
P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
[Crossref]
M. S. Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A, Pure Appl. Opt. 4(5), S119–S124 (2002).
[Crossref]
J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory,” J. Opt. Soc. Am. A 16(5), 1157–1167 (1999).
[Crossref]
D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15(6), 1599–1607 (1998).
[Crossref]
J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory,” J. Opt. Soc. Am. A 16(5), 1157–1167 (1999).
[Crossref]
D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15(6), 1599–1607 (1998).
[Crossref]
R. Stevens and T. Miyashita, “Review of standards for microlenses and microlens arrays,” Imaging Sci. J. 58(4), 202–212 (2010).
[Crossref]
D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]
J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory,” J. Opt. Soc. Am. A 16(5), 1157–1167 (1999).
[Crossref]
D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15(6), 1599–1607 (1998).
[Crossref]
M. S. Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A, Pure Appl. Opt. 4(5), S119–S124 (2002).
[Crossref]
J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17(1), 7–9 (1992).
[Crossref]
[PubMed]
J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
[Crossref]
[PubMed]
D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]
R. Stevens and T. Miyashita, “Review of standards for microlenses and microlens arrays,” Imaging Sci. J. 58(4), 202–212 (2010).
[Crossref]
D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]
D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]
D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]
D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]
D. Feng, Y. B. Yan, G. F. Jin, and S. S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239(4-6), 345–352 (2004).
[Crossref]
J. S. Ye, B. Z. Dong, B. Y. Gu, G. Z. Yang, and S. T. Liu, “Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory,” J. Opt. Soc. Am. A 19(10), 2030–2035 (2002).
[Crossref]
B. Z. Dong, J. Liu, B. Y. Gu, G. Z. Yang, and J. Wang, “Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 18(7), 1465–1470 (2001).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]
M. W. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31(22), 4453–4458 (1992).
[Crossref]
[PubMed]
J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
[Crossref]
[PubMed]
K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt. 49(11), 1997–2005 (2010).
[Crossref]
[PubMed]
D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]
R. Stevens and T. Miyashita, “Review of standards for microlenses and microlens arrays,” Imaging Sci. J. 58(4), 202–212 (2010).
[Crossref]
M. S. Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A, Pure Appl. Opt. 4(5), S119–S124 (2002).
[Crossref]
P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
[Crossref]
J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory,” J. Opt. Soc. Am. A 16(5), 1157–1167 (1999).
[Crossref]
P. Lalanne, “Waveguiding in blazed-binary diffractive elements,” J. Opt. Soc. Am. A 16(10), 2517–2520 (1999).
[Crossref]
D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15(6), 1599–1607 (1998).
[Crossref]
B. Z. Dong, J. Liu, B. Y. Gu, G. Z. Yang, and J. Wang, “Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 18(7), 1465–1470 (2001).
[Crossref]
J. S. Ye, B. Z. Dong, B. Y. Gu, G. Z. Yang, and S. T. Liu, “Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory,” J. Opt. Soc. Am. A 19(10), 2030–2035 (2002).
[Crossref]
D. Feng, Y. B. Yan, G. F. Jin, and S. S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239(4-6), 345–352 (2004).
[Crossref]
D. Feng, P. Ou, L. S. Feng, S. L. Hu, and C. X. Zhang, “Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution,” Opt. Express 16(25), 20968–20973 (2008).
[Crossref]
[PubMed]
A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009).
[Crossref]
[PubMed]
J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17(1), 7–9 (1992).
[Crossref]
[PubMed]
O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, and J. Ruoff, “Rigorous analysis of shadowing effects in blazed transmission gratings,” Opt. Lett. 31(24), 3638–3640 (2006).
[Crossref]
[PubMed]
G. Druart, J. Taboury, N. Guérineau, R. Haïdar, H. Sauer, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33(4), 366–368 (2008).
[Crossref]
[PubMed]
N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16(7), 523–525 (1991).
[Crossref]
[PubMed]
A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 1995).