Abstract

Graded-index (GI) polymer parallel optical waveguides with high-absorption, carbon-black-doped cladding are fabricated using the preform method in order to reduce the inter-channel crosstalk. The waveguides exhibit a lower inter-channel crosstalk (<-69.3dB) than optically-transparent-clad waveguides (~-33.7 dB) and maintain low propagation loss (0.029dB/cm). We characterize the waveguides with different concentration of carbon black in order to confirm the required concentration (required absorption loss) for keeping the inter-channel crosstalk low enough. In addition, carbon-black-doped waveguides are fabricated directly on a substrate by means of a soft-lithography method. Crosstalk is sufficiently decreased despite the high scattering loss of the core material, while insertion loss is not increased. Furthermore, we fabricate a waveguide with a high-scattering-loss cladding to confirm the origin of low crosstalk in carbon-black-doped waveguides. We confirm that high scattering loss of cladding is not necessarily as effective for crosstalk reduction as high absorption loss of cladding.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Benner, M. Ignatowski, J. Kash, D. M. Kuchta, and M. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4), 755–775 (2005), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5388810 .
    [CrossRef]
  2. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Pack., 32, 345 (2009), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4926123 .
  3. T. Ishigure and Y. Takeyoshi, “Polymer waveguide with 4-channel graded-index circular cores for parallel optical interconnects,” Opt. Express 15(9), 5843–5850 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-9-5843 .
    [CrossRef] [PubMed]
  4. N. Bamiedakis, J. Beals IV, R. V. Penty, I. H. White, J. V. DeGroot, Jr., and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects”, IEEE J. Quant. Electron., 45, 415 (2009), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4803864
  5. Y. Takeyoshi and T. Ishigure, “High-density 2 X 4 channel polymer optical waveguide with graded-index circular cores,” J. Lightwave Technol. 27(14), 2852–2861 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=jlt-27-14-2852 .
    [CrossRef]
  6. T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=641528&tag=1 .
    [CrossRef]
  7. T. Ishigure, E. Nihei, and Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33(19), 4261–4266 (1994), http://www.opticsinfobase.org/abstract.cfm?URI=ao-33-19-4261 .
    [CrossRef] [PubMed]
  8. T. Ishigure, K. Ohdoko, Y. Ishiyama, and Y. Koike, “Mode-coupling control and new index profile of GI POF for restricted-launch condition in very-short-reach networks,” J. Lightwave Technol. 23(12), 4155–4168 (2005), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1424152 .
    [CrossRef]
  9. Y. Takeyoshi and T. Ishigure, “Multichannel parallel polymer waveguide with circular W-shaped index profile cores,” IEEE Photon. Technol. Lett. 19(22), 1795–1797 (2007), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4367530 .
    [CrossRef]
  10. T. Ishigure and Y. Nitta, “Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography,” Opt. Express 18(13), 14191–14201 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-13-14191 .
    [CrossRef] [PubMed]

2010

2009

2007

T. Ishigure and Y. Takeyoshi, “Polymer waveguide with 4-channel graded-index circular cores for parallel optical interconnects,” Opt. Express 15(9), 5843–5850 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-9-5843 .
[CrossRef] [PubMed]

Y. Takeyoshi and T. Ishigure, “Multichannel parallel polymer waveguide with circular W-shaped index profile cores,” IEEE Photon. Technol. Lett. 19(22), 1795–1797 (2007), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4367530 .
[CrossRef]

2005

A. F. Benner, M. Ignatowski, J. Kash, D. M. Kuchta, and M. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4), 755–775 (2005), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5388810 .
[CrossRef]

T. Ishigure, K. Ohdoko, Y. Ishiyama, and Y. Koike, “Mode-coupling control and new index profile of GI POF for restricted-launch condition in very-short-reach networks,” J. Lightwave Technol. 23(12), 4155–4168 (2005), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1424152 .
[CrossRef]

1997

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=641528&tag=1 .
[CrossRef]

1994

Benner, A. F.

A. F. Benner, M. Ignatowski, J. Kash, D. M. Kuchta, and M. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4), 755–775 (2005), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5388810 .
[CrossRef]

Ignatowski, M.

A. F. Benner, M. Ignatowski, J. Kash, D. M. Kuchta, and M. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4), 755–775 (2005), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5388810 .
[CrossRef]

Ishigure, T.

T. Ishigure and Y. Nitta, “Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography,” Opt. Express 18(13), 14191–14201 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-13-14191 .
[CrossRef] [PubMed]

Y. Takeyoshi and T. Ishigure, “High-density 2 X 4 channel polymer optical waveguide with graded-index circular cores,” J. Lightwave Technol. 27(14), 2852–2861 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=jlt-27-14-2852 .
[CrossRef]

Y. Takeyoshi and T. Ishigure, “Multichannel parallel polymer waveguide with circular W-shaped index profile cores,” IEEE Photon. Technol. Lett. 19(22), 1795–1797 (2007), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4367530 .
[CrossRef]

T. Ishigure and Y. Takeyoshi, “Polymer waveguide with 4-channel graded-index circular cores for parallel optical interconnects,” Opt. Express 15(9), 5843–5850 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-9-5843 .
[CrossRef] [PubMed]

T. Ishigure, K. Ohdoko, Y. Ishiyama, and Y. Koike, “Mode-coupling control and new index profile of GI POF for restricted-launch condition in very-short-reach networks,” J. Lightwave Technol. 23(12), 4155–4168 (2005), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1424152 .
[CrossRef]

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=641528&tag=1 .
[CrossRef]

T. Ishigure, E. Nihei, and Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33(19), 4261–4266 (1994), http://www.opticsinfobase.org/abstract.cfm?URI=ao-33-19-4261 .
[CrossRef] [PubMed]

Ishiyama, Y.

Kash, J.

A. F. Benner, M. Ignatowski, J. Kash, D. M. Kuchta, and M. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4), 755–775 (2005), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5388810 .
[CrossRef]

Koike, Y.

Kuchta, D. M.

A. F. Benner, M. Ignatowski, J. Kash, D. M. Kuchta, and M. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4), 755–775 (2005), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5388810 .
[CrossRef]

Nihei, E.

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=641528&tag=1 .
[CrossRef]

T. Ishigure, E. Nihei, and Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33(19), 4261–4266 (1994), http://www.opticsinfobase.org/abstract.cfm?URI=ao-33-19-4261 .
[CrossRef] [PubMed]

Nitta, Y.

Nyu, T.

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=641528&tag=1 .
[CrossRef]

Ohdoko, K.

Ritter, M.

A. F. Benner, M. Ignatowski, J. Kash, D. M. Kuchta, and M. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4), 755–775 (2005), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5388810 .
[CrossRef]

Satoh, M.

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=641528&tag=1 .
[CrossRef]

Takanashi, O.

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=641528&tag=1 .
[CrossRef]

Takeyoshi, Y.

Yamazaki, S.

T. Ishigure, M. Satoh, O. Takanashi, E. Nihei, T. Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=641528&tag=1 .
[CrossRef]

Appl. Opt.

IBM J. Res. Develop.

A. F. Benner, M. Ignatowski, J. Kash, D. M. Kuchta, and M. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4), 755–775 (2005), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5388810 .
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Takeyoshi and T. Ishigure, “Multichannel parallel polymer waveguide with circular W-shaped index profile cores,” IEEE Photon. Technol. Lett. 19(22), 1795–1797 (2007), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4367530 .
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Pack., 32, 345 (2009), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4926123 .

N. Bamiedakis, J. Beals IV, R. V. Penty, I. H. White, J. V. DeGroot, Jr., and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects”, IEEE J. Quant. Electron., 45, 415 (2009), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4803864

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematics of crosstalk reduction in waveguides with carbon-black-doped cladding.

Fig. 2
Fig. 2

Fabrication process of a waveguide with high attenuation cladding.

Fig. 3
Fig. 3

Cross-sections of waveguides with high attenuation cladding (a):waveguide with carbon in cladding (b):waveguide with no carbon in cladding.

Fig. 4
Fig. 4

(a) Interference fringe pattern observed from a carbon-black-doped clad polymer waveguide (b) Refractive index profile formed in the waveguide shown in Fig. 4(a).

Fig. 5
Fig. 5

Propagation loss of a carbon-black doped waveguide.

Fig. 6
Fig. 6

Schematics of measurement system of inter-channel crosstalk.

Fig. 7
Fig. 7

Power distribution at the output end of waveguides with and without carbon black in cladding.

Fig. 8
Fig. 8

Cross-sections of waveguides (a) with carbon-black in cladding (b) without carbon black in cladding fabricated using a soft lithography process.

Fig. 9
Fig. 9

Power distribution at the output end of waveguides with and without carbon black in the cladding fabricated using a soft lithography process.

Fig. 10
Fig. 10

Appearance of PMMA bulks with (a) no attenuation material (b) high absorption material (c) high scattering material.

Tables (2)

Tables Icon

Table 1 Comparison of Waveguides with Different Concentration of Carbon Black in Cladding

Tables Icon

Table 2 Characteristics of Waveguides with Carbon Black or BzMA Powder in Claddings

Metrics