Abstract

Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information to characterize and understand the material behaviour. In this paper we present a 3-dimensional model based on direct measurements of parameters to predict the relief structures generated on the material. This model is successfully applied to different photopolymers with different values of monomer diffusion. The importance of monomer diffusion in depth is also discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
    [CrossRef]
  2. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
    [CrossRef]
  3. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
    [CrossRef]
  4. G. P. Nordinand and A. R. Tanguay., “Photopolymer-based stratified volume holographic optical elements,” Opt. Lett. 17(23), 1709–1711 (1992).
    [CrossRef] [PubMed]
  5. F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
    [CrossRef]
  6. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
    [CrossRef] [PubMed]
  7. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
    [CrossRef] [PubMed]
  8. R. K Kostuk, J. Castro, D. Zhang “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.
  9. A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D-12 (2010).
    [CrossRef]
  10. S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
    [CrossRef]
  11. T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16(12), 8487–8497 (2008).
    [CrossRef] [PubMed]
  12. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part I: Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
    [CrossRef]
  13. S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
    [CrossRef]
  14. L. M. C. Sagis, “Generalised curvature expansion for the surface internal energy,” Physica A 246(3-4), 591–608 (1997).
    [CrossRef]
  15. S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253(5-6), 317–321 (1999).
    [CrossRef]
  16. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
    [CrossRef] [PubMed]
  17. S. Gallego, A. Márquez, M. Ortuño, S. Marini, I. Pascual, and A. Beléndez, “Monomer diffusion in sustainable photopolymers for diffractive optics applications,” Opt. Mater. (accepted).
  18. T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12(12), 124011 (2010).
    [CrossRef]
  19. K. Trainer, K. Wearen, D. Nazarova, I. Naydenova, and V. Toal, “Optimisation of an acrylamide-based photopolymer system for holographic inscription of surface patterns with sub-micron resolution,” J. Opt. 12(12), 124012 (2010).
    [CrossRef]
  20. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
    [CrossRef] [PubMed]
  21. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
    [CrossRef] [PubMed]
  22. S. Wu and E. N. Glytsis, “Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,” J. Opt. Soc. Am. B 20(6), 1177–1188 (2003).
    [CrossRef]
  23. S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA 3 based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
    [CrossRef]
  24. S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
    [CrossRef]
  25. S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt. 48(22), 4403–4413 (2009).
    [CrossRef] [PubMed]
  26. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
    [CrossRef] [PubMed]
  27. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005).
    [CrossRef] [PubMed]
  28. J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32(17), 5655–5659 (1999).
    [CrossRef]
  29. A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32(6), 1828–1837 (1999).
    [CrossRef]
  30. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt. 41(5), 845–852 (2002).
    [CrossRef] [PubMed]
  31. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
    [CrossRef] [PubMed]
  32. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005).
    [CrossRef]
  33. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010).
    [CrossRef]
  34. K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent,” Biochem. Pharmacol. 19(9), 2591–2604 (1970).
    [CrossRef] [PubMed]
  35. M. Friedman, “Chemistry, biochemistry, and safety of acrylamide. A review,” J. Agric. Food Chem. 51(16), 4504–4526 (2003).
    [CrossRef]

2011 (2)

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part I: Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[CrossRef]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA 3 based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

2010 (5)

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010).
[CrossRef]

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12(12), 124011 (2010).
[CrossRef]

K. Trainer, K. Wearen, D. Nazarova, I. Naydenova, and V. Toal, “Optimisation of an acrylamide-based photopolymer system for holographic inscription of surface patterns with sub-micron resolution,” J. Opt. 12(12), 124012 (2010).
[CrossRef]

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D-12 (2010).
[CrossRef]

2009 (2)

2008 (3)

2007 (2)

A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

2006 (2)

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

2005 (7)

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005).
[CrossRef]

2003 (2)

2002 (1)

2000 (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

1999 (3)

J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32(17), 5655–5659 (1999).
[CrossRef]

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32(6), 1828–1837 (1999).
[CrossRef]

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253(5-6), 317–321 (1999).
[CrossRef]

1997 (1)

L. M. C. Sagis, “Generalised curvature expansion for the surface internal energy,” Physica A 246(3-4), 591–608 (1997).
[CrossRef]

1992 (1)

1970 (1)

K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent,” Biochem. Pharmacol. 19(9), 2591–2604 (1970).
[CrossRef] [PubMed]

Abe, S.

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253(5-6), 317–321 (1999).
[CrossRef]

Acebal, P.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Aldridge, W. N.

K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent,” Biochem. Pharmacol. 19(9), 2591–2604 (1970).
[CrossRef] [PubMed]

Álvarez, M. L.

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D-12 (2010).
[CrossRef]

Ashley, J.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Babeva, T.

Belendez, A.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

Beléndez, A.

Benléndez, A.

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

Bernal, M.-P.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Blaya, S.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Bruder, F.-K.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Burr, G. W.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Carr, A. J.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Chikama, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Close, C. E.

Coufal, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Daniels, S. M.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

Fäcke, T.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Fernandez, E.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

Fernández, E.

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D-12 (2010).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

Fimia, A.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Francés, J.

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA 3 based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

Friedman, M.

M. Friedman, “Chemistry, biochemistry, and safety of acrylamide. A review,” J. Agric. Food Chem. 51(16), 4504–4526 (2003).
[CrossRef]

Furushima, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Gallego, S.

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA 3 based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D-12 (2010).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt. 48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, I. Pascual, and A. Beléndez, “Monomer diffusion in sustainable photopolymers for diffractive optics applications,” Opt. Mater. (accepted).

Gleeson, M. R.

Glytsis, E. N.

Grabowski, M. W.

Guenther, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Hashimoto, K.

K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent,” Biochem. Pharmacol. 19(9), 2591–2604 (1970).
[CrossRef] [PubMed]

Hidaka, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Hoffnagle, J. A.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Hönel, D.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Ishizu, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Jefferson, C. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Jurbergs, D.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Kasala, K.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

Kelly, J. V.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[CrossRef] [PubMed]

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005).
[CrossRef]

Lawrence, J. R.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt. 41(5), 845–852 (2002).
[CrossRef] [PubMed]

MacFarlane, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Mackey, D.

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010).
[CrossRef]

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12(12), 124011 (2010).
[CrossRef]

Madrigal, R. F.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Marcus, B.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Marini, S.

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA 3 based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt. 48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, I. Pascual, and A. Beléndez, “Monomer diffusion in sustainable photopolymers for diffractive optics applications,” Opt. Mater. (accepted).

Marquez, A.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

Márquez, A.

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA 3 based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D-12 (2010).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt. 48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, I. Pascual, and A. Beléndez, “Monomer diffusion in sustainable photopolymers for diffractive optics applications,” Opt. Mater. (accepted).

Martin, S.

McLeod, R. R.

Mendez, D.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

Méndez, D.

Murciano, A.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Naydenova, I.

K. Trainer, K. Wearen, D. Nazarova, I. Naydenova, and V. Toal, “Optimisation of an acrylamide-based photopolymer system for holographic inscription of surface patterns with sub-micron resolution,” J. Opt. 12(12), 124012 (2010).
[CrossRef]

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010).
[CrossRef]

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12(12), 124011 (2010).
[CrossRef]

T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16(12), 8487–8497 (2008).
[CrossRef] [PubMed]

Nazarova, D.

K. Trainer, K. Wearen, D. Nazarova, I. Naydenova, and V. Toal, “Optimisation of an acrylamide-based photopolymer system for holographic inscription of surface patterns with sub-micron resolution,” J. Opt. 12(12), 124012 (2010).
[CrossRef]

Neipp, C.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

Nordinand, G. P.

O’Neill, F. T.

Ochi, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Ortuno, M.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005).
[CrossRef]

Ortuño, M.

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA 3 based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D-12 (2010).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, I. Pascual, and A. Beléndez, “Monomer diffusion in sustainable photopolymers for diffractive optics applications,” Opt. Mater. (accepted).

Ozawa, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Pascual, I.

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D-12 (2010).
[CrossRef]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range,” Appl. Opt. 48(22), 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, M. Ortuño, S. Marini, I. Pascual, and A. Beléndez, “Monomer diffusion in sustainable photopolymers for diffractive optics applications,” Opt. Mater. (accepted).

Rewari, A.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

Rölle, T.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Sagis, L. M. C.

L. M. C. Sagis, “Generalised curvature expansion for the surface internal energy,” Physica A 246(3-4), 591–608 (1997).
[CrossRef]

Saravanamuttu, K.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

Shelby, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Sheridan, J. T.

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: Part I: Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt. 41(5), 845–852 (2002).
[CrossRef] [PubMed]

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253(5-6), 317–321 (1999).
[CrossRef]

Sillescu, H.

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32(6), 1828–1837 (1999).
[CrossRef]

Sincerbox, G. T.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

Sullivan, A. C.

Tanaka, A.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Tanguay, A. R.

Toal, V.

K. Trainer, K. Wearen, D. Nazarova, I. Naydenova, and V. Toal, “Optimisation of an acrylamide-based photopolymer system for holographic inscription of surface patterns with sub-micron resolution,” J. Opt. 12(12), 124012 (2010).
[CrossRef]

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12(12), 124011 (2010).
[CrossRef]

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010).
[CrossRef]

T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16(12), 8487–8497 (2008).
[CrossRef] [PubMed]

Tomita, Y.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Trainer, K.

K. Trainer, K. Wearen, D. Nazarova, I. Naydenova, and V. Toal, “Optimisation of an acrylamide-based photopolymer system for holographic inscription of surface patterns with sub-micron resolution,” J. Opt. 12(12), 124012 (2010).
[CrossRef]

Ulibarrena, M.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Veniaminov, A. V.

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32(6), 1828–1837 (1999).
[CrossRef]

Wang, C. H.

J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32(17), 5655–5659 (1999).
[CrossRef]

Wearen, K.

K. Trainer, K. Wearen, D. Nazarova, I. Naydenova, and V. Toal, “Optimisation of an acrylamide-based photopolymer system for holographic inscription of surface patterns with sub-micron resolution,” J. Opt. 12(12), 124012 (2010).
[CrossRef]

Weiser, M.-S.

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Wu, S.

Xia, J.

J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32(17), 5655–5659 (1999).
[CrossRef]

Zhang, J.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

Biochem. Pharmacol. (1)

K. Hashimoto and W. N. Aldridge, “Biochemical studies on acrylamide, a neurotoxic agent,” Biochem. Pharmacol. 19(9), 2591–2604 (1970).
[CrossRef] [PubMed]

IBM J. Res. Develop. (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Develop. 44(3), 341–368 (2000).
[CrossRef]

J. Agric. Food Chem. (1)

M. Friedman, “Chemistry, biochemistry, and safety of acrylamide. A review,” J. Agric. Food Chem. 51(16), 4504–4526 (2003).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128(2), 406–407 (2006).
[CrossRef] [PubMed]

J. Mater. Sci. (1)

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. Opt. (2)

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12(12), 124011 (2010).
[CrossRef]

K. Trainer, K. Wearen, D. Nazarova, I. Naydenova, and V. Toal, “Optimisation of an acrylamide-based photopolymer system for holographic inscription of surface patterns with sub-micron resolution,” J. Opt. 12(12), 124012 (2010).
[CrossRef]

J. Opt. Soc. Am. B (4)

Macromol. Symp. (1)

M.-S. Weiser, F.-K. Bruder, T. Fäcke, D. Hönel, D. Jurbergs, and T. Rölle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296(1), 133–137 (2010).
[CrossRef]

Macromolecules (2)

J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32(17), 5655–5659 (1999).
[CrossRef]

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32(6), 1828–1837 (1999).
[CrossRef]

Opt. Commun. (1)

S. Gallego, C. Neipp, M. Ortuño, A. Benléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

Opt. Express (6)

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13(9), 3543–3557 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
[CrossRef] [PubMed]

T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16(12), 8487–8497 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Mater. (2)

S. Gallego, A. Márquez, M. Ortuño, S. Marini, I. Pascual, and A. Beléndez, “Monomer diffusion in sustainable photopolymers for diffractive optics applications,” Opt. Mater. (accepted).

S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA 3 based materials at zero spatial frequency limit,” Opt. Mater. 33(3), 531–537 (2011).
[CrossRef]

Phys. Lett. A (1)

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253(5-6), 317–321 (1999).
[CrossRef]

Physica A (1)

L. M. C. Sagis, “Generalised curvature expansion for the surface internal energy,” Physica A 246(3-4), 591–608 (1997).
[CrossRef]

Proc. SPIE (2)

A. Márquez, S. Gallego, M. Ortuño, E. Fernández, M. L. Álvarez, A. Beléndez, and I. Pascual, “Generation of diffractive optical elements onto a photopolymer using a liquid crystal display,” Proc. SPIE 7717, 77170D, 77170D-12 (2010).
[CrossRef]

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Other (1)

R. K Kostuk, J. Castro, D. Zhang “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.

Supplementary Material (1)

» Media 1: AVI (1848 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Thickness as a function of time during 16 s of recording.

Fig. 2
Fig. 2

Thickness as a function of time during 100 s after recording.

Fig. 3
Fig. 3

Four frames excerpt from video where surface evolution during and after exposure is simulated (Media 1). (a) 25s, (b) 50s, (c) 75s and (d) 100s.

Fig. 4
Fig. 4

Simulated diffraction efficiency for order 0 (blue), 1 (green), 2 (red), 3 (black) and experimental dots as a function of time with diffusion in depth.

Fig. 5
Fig. 5

Simulated diffraction efficiency for order 0 (blue), 1 (green), 2 (red) and 3 (black) and experimental dots as a function of time.

Fig. 6
Fig. 6

Simulated diffraction efficiency for order 0 (blue), 1 (green), 2 (red), 3 (black) and experimental dots as a function of time without diffusion in depth for PVA/AA material.

Fig. 7
Fig. 7

Simulated diffraction efficiency for order 0 (blue), 1 (green), 2 (red), 3 black) and experimental dots as a function of time without diffusion in depth for biophotopol material.

Tables (1)

Tables Icon

Table 1 tf Obtained from the Model for Different Values of Monomer Diffusion (D)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[ M ] ( x , z , t ) t = x D [ M ] ( x , z , t ) x + z D [ M ] ( x , z , t ) z F R ( x , z , t ) [ M ] ( x , z , t )
[ P ] ( x , z , t ) t = F R ( x , z , t ) [ M ] ( x , z , t )
F R = k R I γ ( x , z , t ) = k R ( I 0 [ 1 + V cos ( K g x ) ] e α ( t ) z ) γ
M i , j , k = Δ t Δ x 2 D ​   M i + 1 , j , k 1 2 Δ t Δ x 2 D     M i , j , k 1 + Δ t Δ x 2 D     M i 1 , j , k 1 + Δ t Δ z 2 D M i , j + 1 , k 1 2 Δ t Δ z 2 D M i , j , k 1 + Δ t Δ z 2 D M i , j 1 , k 1 Δ t F R i , j , k 1 M i , j , k 1 + M i , j , k 1
P i , j , k = Δ t F R i , j , k 1 M i , j , k 1 + P i , j , k 1
Δ t 1 2 ( Δ x ) 2 D
M i ,1 , k = Δ t Δ x 2 D M i + 1,1 , k 1 2 Δ t Δ x 2 D M i ,1 , k 1 + Δ t Δ x 2 D M i 1,1 , k 1 + Δ t Δ z 2 D M i ,2 , k 1 Δ t Δ z 2 D M i ,1 , k 1 Δ t k R I i ,1 , k 1 M i ,1 , k 1 + M i ,1 , k 1
M i , j max, k = Δ t Δ x 2 D M i + 1, j max, k 1 2 Δ t Δ x 2 D M i , j max, k 1 + Δ t Δ x 2 D M i 1, j max, k 1 Δ t Δ z 2 D M i , j max, k 1 + Δ t Δ z 2 D M i , j 1 max, k 1 Δ t k R I i , j , k 1 M i , j max, k 1 + M i , j max, k 1
d = d b + d m + d p
d = d 0 ( 1 M 0 M ) + d 0 P ( 1 S h 100 M 0 )

Metrics