Abstract

We have investigated the characteristics of THz emissions from p/n junctions with metallic lines under non-bias conditions. The waveforms, spectra, and polarizations depend on the length and shape of the lines. This indicates that the transient photocurrents from p/n junctions flow into the metallic lines that emit THz waves and act as an antenna. We have successfully demonstrated the non-contact inspection of open defects of multi-layered interconnects in a large-scale integrated circuit using the laser THz emission microscope (LTEM). The p/n junctions connected to the defective interconnects can be identified by comparing the LTEM images of normal and defective circuits.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
    [CrossRef]
  2. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [CrossRef] [PubMed]
  3. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
    [CrossRef]
  4. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  6. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
    [CrossRef] [PubMed]
  7. P. Planken, “Microscopy: a terahertz nanoscope,” Nature 456(7221), 454–455 (2008).
    [CrossRef] [PubMed]
  8. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [CrossRef] [PubMed]
  9. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [CrossRef]
  10. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
    [CrossRef] [PubMed]
  11. M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13(1), 115–120 (2005).
    [CrossRef] [PubMed]
  12. S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 498–504 (2008).
    [CrossRef]
  13. T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
    [CrossRef]
  14. T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
    [CrossRef] [PubMed]
  15. M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Non-contact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93(4), 041117 (2008).
    [CrossRef]
  16. M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
    [CrossRef]
  17. R. Inoue, K. Takayama, and M. Tonouchi, “Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses,” J. Opt. Soc. Am. B 26(9), A14–A22 (2009).
    [CrossRef]
  18. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  19. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
    [CrossRef]
  20. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
    [CrossRef]
  21. A. Treizebre, M. Hofman, and B. Bocquet, “Terahertz spiral planar Goubau line rejectors for biological characterization,” Prog. Electromagn. Res. M 14, 163–176 (2010).
    [CrossRef]

2010 (1)

A. Treizebre, M. Hofman, and B. Bocquet, “Terahertz spiral planar Goubau line rejectors for biological characterization,” Prog. Electromagn. Res. M 14, 163–176 (2010).
[CrossRef]

2009 (2)

M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
[CrossRef]

R. Inoue, K. Takayama, and M. Tonouchi, “Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses,” J. Opt. Soc. Am. B 26(9), A14–A22 (2009).
[CrossRef]

2008 (5)

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[CrossRef] [PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

P. Planken, “Microscopy: a terahertz nanoscope,” Nature 456(7221), 454–455 (2008).
[CrossRef] [PubMed]

S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 498–504 (2008).
[CrossRef]

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Non-contact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93(4), 041117 (2008).
[CrossRef]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

2005 (3)

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[CrossRef]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13(1), 115–120 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

1999 (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

1997 (1)

1995 (1)

1989 (1)

1988 (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
[CrossRef]

Aizpurua, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Auston, D. H.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
[CrossRef]

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Bocquet, B.

A. Treizebre, M. Hofman, and B. Bocquet, “Terahertz spiral planar Goubau line rejectors for biological characterization,” Prog. Electromagn. Res. M 14, 163–176 (2010).
[CrossRef]

Fattinger, C.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Grischkowsky, D.

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Hillenbrand, R.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Hofman, M.

A. Treizebre, M. Hofman, and B. Bocquet, “Terahertz spiral planar Goubau line rejectors for biological characterization,” Prog. Electromagn. Res. M 14, 163–176 (2010).
[CrossRef]

Hu, B. B.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Huber, A. J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Inoue, H.

Inoue, R.

Kawase, K.

M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
[CrossRef]

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Non-contact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93(4), 041117 (2008).
[CrossRef]

M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13(1), 115–120 (2005).
[CrossRef] [PubMed]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
[CrossRef] [PubMed]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[CrossRef] [PubMed]

Kawayama, I.

Keilmann, F.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Kim, S.

M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
[CrossRef]

S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 498–504 (2008).
[CrossRef]

Kiwa, T.

Koch, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Kondo, J.

Matsumoto, T.

M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
[CrossRef]

Matsuura, S.

Migitaka, S.

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Murakami, H.

M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
[CrossRef]

S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 498–504 (2008).
[CrossRef]

Nakashima, S.

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Nikawa, K.

M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
[CrossRef]

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Non-contact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93(4), 041117 (2008).
[CrossRef]

Nuss, M. C.

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
[CrossRef] [PubMed]

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
[CrossRef]

Ogawa, Y.

Oka, S.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Otani, C.

M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
[CrossRef]

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Non-contact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93(4), 041117 (2008).
[CrossRef]

M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13(1), 115–120 (2005).
[CrossRef] [PubMed]

Planken, P.

P. Planken, “Microscopy: a terahertz nanoscope,” Nature 456(7221), 454–455 (2008).
[CrossRef] [PubMed]

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Sakai, K.

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Smith, P. R.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
[CrossRef]

Suzuki, M.

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[CrossRef]

Takayama, K.

Tani, M.

Tonouchi, M.

M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
[CrossRef]

R. Inoue, K. Takayama, and M. Tonouchi, “Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses,” J. Opt. Soc. Am. B 26(9), A14–A22 (2009).
[CrossRef]

S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 498–504 (2008).
[CrossRef]

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Non-contact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93(4), 041117 (2008).
[CrossRef]

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[CrossRef] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[CrossRef]

M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13(1), 115–120 (2005).
[CrossRef] [PubMed]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
[CrossRef] [PubMed]

Treizebre, A.

A. Treizebre, M. Hofman, and B. Bocquet, “Terahertz spiral planar Goubau line rejectors for biological characterization,” Prog. Electromagn. Res. M 14, 163–176 (2010).
[CrossRef]

Tsukada, K.

T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47(18), 3324–3327 (2008).
[CrossRef] [PubMed]

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[CrossRef]

van Exter, M.

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Watanabe, Y.

Wittborn, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Yamada, H.

Yamashita, M.

M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
[CrossRef]

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Non-contact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93(4), 041117 (2008).
[CrossRef]

M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13(1), 115–120 (2005).
[CrossRef] [PubMed]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28(21), 2058–2060 (2003).
[CrossRef] [PubMed]

Yokosawa, K.

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[CrossRef]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68(6), 1085–1094 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86(26), 261102 (2005).
[CrossRef]

M. Yamashita, C. Otani, K. Kawase, K. Nikawa, and M. Tonouchi, “Non-contact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope,” Appl. Phys. Lett. 93(4), 041117 (2008).
[CrossRef]

M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, “Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope,” Appl. Phys. Lett. 94(19), 191104 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Kim, H. Murakami, and M. Tonouchi, “Transmission-type laser THz emission microscope using a solid immersion lens,” IEEE J. Sel. Top. Quantum Electron. 14(2), 498–504 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Nature (2)

P. Planken, “Microscopy: a terahertz nanoscope,” Nature 456(7221), 454–455 (2008).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Prog. Electromagn. Res. M (1)

A. Treizebre, M. Hofman, and B. Bocquet, “Terahertz spiral planar Goubau line rejectors for biological characterization,” Prog. Electromagn. Res. M 14, 163–176 (2010).
[CrossRef]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of laser THz emission microscope (LTEM) system for large-scale integration (LSI) circuit inspection.

Fig. 2
Fig. 2

Tested sample structures. (a) Cross-sectional view of the sample. N-type diffusion (n+) layers and metallic line structures were fabricated on p-type silicon substrates. The width of the metal line was 0.5 μm. (b) and (c) Top views of the samples with an n+ layer and a metal line with length L1 ranging from 10 to 1000 μm along the + y-direction and (–y)-direction, respectively. (d) a n+ layer with a metal line (total length: 300 μm) that has gaps of 0.5 μm width at various positions (L2) from 10 to 250 μm. (e) a n+ layer with a right-angled metal line (total length: 300 μm); L3 varies from 10 to 300 μm.

Fig. 3
Fig. 3

THz waveforms generated from p/n junctions connected to metal lines along (a) + y direction and (b) (–y) direction. (c) Normalized Fast Fourier transform (FFT) spectra of the THz waveforms in (a). (d) Line length (L1) dependence of the negative peak position of the THz waveform. LTEM images of p/n junction. (e) with and (f) without the silicide layer. The line lengths of both samples were 300 μm. The dotted red square indicates the area of the n+ diffusion layer.

Fig. 4
Fig. 4

Gap position dependence of the (a) THz waveform and (b) positive peak position of the p/n junction with the disconnected metal line. The total length of the line is 300 μm.

Fig. 5
Fig. 5

THz waveforms from p/n junctions with right-angled metal line. The detected THz electric field is parallel to the (a) y-direction and (b) x-direction, as indicated in Fig. 2(e). (c) Dependence of the maximum peak position on bending position length.

Fig. 6
Fig. 6

(a) Samples with different p/n junction structures. (b) Corresponding THz waveforms. (b) THz waveforms from different p/n junction structures.

Fig. 7
Fig. 7

THz emission mechanism of multi-layered interconnection in LSIs excited by fs laser pulses.

Fig. 8
Fig. 8

(a) Laser scanning image of the sample (C7552 benchmark LSI). (b) THz waveform emitted by exciting a p/n junction connected to the VDD line, as indicated by the red arrow in (a). The VDD line applies an external voltage to the drain region of the CMOS. (c), (d) LTEM images of the sample obtained by detecting the polarization of the THz waves in the x-direction and y-direction, respectively. The sizes of both images are 770 × 770 μm2 with 512 × 512 pixels. (e) Electric potential display of the VDD (blue) and GND (yellow) lines in CAD layout.

Fig. 9
Fig. 9

Comparison of LTEM images between the (a) normal LSI and (b) defective one. (c) CAD layout of the defective area. The yellow line shows the position of the open defect in the GND line indicated by green lines. The obvious difference in the LTEM images due to the open defect appears in the yellow boxes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f r = c λ r = c 2 l e ε e = c 2 l e [ ( 1 + ε d ) / 2 ] 1 / 2

Metrics