Abstract

Polarization-switched quadrature phase-shift keying has been demonstrated experimentally at 40.5Gb/s with a coherent receiver and digital signal processing. Compared to polarization-multiplexed QPSK at the same bit rate, its back-to-back sensitivity at 10−3 bit-error-ratio shows 0.9dB improvement, and it tolerates about 1.6dB higher launch power for 10 × 100km, 50GHz-spaced WDM transmission allowing 1dB penalty in required optical-signal-to-noise ratio relative to back-to-back.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370x294-Gb/s) PDM-128QAM –OFDM transmission over 3x55-km SSMF using pilot-based phase noise mitigation,” Proc. OFC-NFOEC 2011, Los Angeles, CA, paper PDPB5.
  2. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. Borel, and K. Carlson, “8x450Gb/s, 50-GHz-spaced, PDM-32QAM transmission over 400km and one 50GHz ROADM,” Proc. OFC-NFOEC 2011, Los Angeles, CA, paper PDPB3.
  3. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  4. E. Agrell and M. Karlsson, “Power efficient modulation formats in coherent transmission systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
    [CrossRef]
  5. H. Bülow, “Polarization QAM modulation (POLQAM) for coherent detection schemes,” Proc. OFC-NFOEC 2009, San Diego, CA, paper OWG2.
  6. P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
    [CrossRef] [PubMed]
  7. P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in Proc. of ECOC’2010, paper Th.10.E.2.
  8. E. Masalkina, R. Dischler, and H. Bülow, “Experimental study of polarization-switched-QPSK subcarrier modulation and iterative demapping on optical OFDM systems,” in Proc. of OFC-NFOEC 2011, paper OThO6.
  9. M. Sjödin, P. Johannisson, H. Wymeersch, P. A. Andrekson, and M. Karlsson, “Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s,” Opt. Express 19(8), 7839–7846 (2011).
    [CrossRef] [PubMed]
  10. P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19(8), 7734–7741 (2011).
    [CrossRef] [PubMed]
  11. D. S. Millar, D. Lavery, S. Makovejs, C. Behrens, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express 19(10), 9296–9302 (2011).
    [CrossRef] [PubMed]
  12. D. S. Millar and S. J. Savory, “Blind adaptive equalization of polarization-switched QPSK modulation,” Opt. Express 19(9), 8533–8538 (2011).
    [CrossRef] [PubMed]
  13. D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
    [CrossRef]
  14. X. Zhou, J. Yu, and P. D. Magill, “Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals,” Proc. OFC-NFOEC 2009, San Diego, CA, paper OWG3.
  15. X. Zhou, J. Yu, M. F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing,” J. Lightwave Technol. 29(4), 571–577 (2011).
    [CrossRef]
  16. X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receiver with M-QAM modulation format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
    [CrossRef]

2011 (5)

2010 (2)

X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receiver with M-QAM modulation format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forghieri, “Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects,” Opt. Express 18(11), 11360–11371 (2010).
[CrossRef] [PubMed]

2009 (2)

1980 (1)

D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[CrossRef]

Agrell, E.

Andrekson, P. A.

Bayvel, P.

Behrens, C.

Birk, M.

Borel, P. I.

Bosco, G.

Carena, A.

Curri, V.

Forghieri, F.

Godard, D. N.

D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[CrossRef]

Huang, M. F.

Johannisson, P.

Karlsson, M.

Lavery, D.

Lingle, R.

Magill, P.

Makovejs, S.

Millar, D. S.

Nelson, L.

Peckham, D. W.

Poggiolini, P.

Savory, S. J.

Shao, Y.

Sjödin, M.

Thomsen, B. C.

Wang, T.

Wymeersch, H.

Yu, J.

Zhou, X.

Zhu, B.

IEEE Photon. Technol. Lett. (1)

X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receiver with M-QAM modulation format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (6)

Other (6)

P. Serena, A. Vannucci, and A. Bononi, “The performance of polarization switched QPSK (PS-QPSK) in dispersion managed WDM transmissions,” in Proc. of ECOC’2010, paper Th.10.E.2.

E. Masalkina, R. Dischler, and H. Bülow, “Experimental study of polarization-switched-QPSK subcarrier modulation and iterative demapping on optical OFDM systems,” in Proc. of OFC-NFOEC 2011, paper OThO6.

X. Zhou, J. Yu, and P. D. Magill, “Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals,” Proc. OFC-NFOEC 2009, San Diego, CA, paper OWG3.

H. Bülow, “Polarization QAM modulation (POLQAM) for coherent detection schemes,” Proc. OFC-NFOEC 2009, San Diego, CA, paper OWG2.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370x294-Gb/s) PDM-128QAM –OFDM transmission over 3x55-km SSMF using pilot-based phase noise mitigation,” Proc. OFC-NFOEC 2011, Los Angeles, CA, paper PDPB5.

X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. Borel, and K. Carlson, “8x450Gb/s, 50-GHz-spaced, PDM-32QAM transmission over 400km and one 50GHz ROADM,” Proc. OFC-NFOEC 2011, Los Angeles, CA, paper PDPB3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental set-up for PS-QPSK back-to-back measurements. The inset shows the PS-QPSK eye diagram. For PM-QPSK, a polarization multiplexing stage replaces the polarization modulator, and 10.125Gb/s data signals are applied to the QPSK modulator.

Fig. 2
Fig. 2

Offline digital signal processing flow chart.

Fig. 3
Fig. 3

Recovered constellation diagrams for back-to-back measurement of (a) 40.5Gb/s PM-QPSK and (b) 40.5Gb/s PS-QPSK.

Fig. 4
Fig. 4

Back-to-back sensitivity measurements for PS-QPSK and PM-QPSK.

Fig. 5
Fig. 5

Experimental set-up for PS-QPSK WDM transmission experiments over 10 × 100km SSMF. For PM-QPSK, polarization multiplexing stages replace the polarization modulators, and 10.125Gb/s data signals are applied to the QPSK modulators.

Fig. 6
Fig. 6

(a) BER versus received OSNR for PS-QPSK after WDM transmission over 10 × 100km SSMF. (b) PS-QPSK constellation diagrams for 5dBm/ch and 18.3dB OSNR.

Fig. 7
Fig. 7

Required OSNR for PS-QPSK and PM-QPSK (both at 40.5Gb/s) after WDM transmission over 10 × 100km SSMF for a range of launch powers into the spans.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε x ( n ) = | Z x ( n ) | 2 R x ( n ) , ε y ( n ) = | Z y ( n ) | 2 R y ( n ) ,
R x ( n ) = E {     | Z x ( n ) | 2 + | Z y ( n ) | 2 }   and  R y ( n ) = 0 ,   if  | Z x ( n ) | 2 > | Z y ( n ) | 2 , R x ( n ) = 0   and  R y ( n ) = E {     | Z x ( n ) | 2 + | Z y ( n ) | 2 }  ,  if  | Z x ( n ) | 2 < | Z y ( n ) | 2 .

Metrics