Abstract

In this study we report a new method for maskless lithography fabrication process by a combination of direct silicon oxide etch-stop layer patterning and wet alkaline etching. A thin layer of etch-stop silicon oxide of predetermined pattern was first generated by irradiation with high repetition (MHz) ultrafast (femtosecond) laser pulses in air and at atmospheric pressure. The induced thin layer of silicon oxide is used as an etch stop during etching process in alkaline etchants such as KOH. Our proposed method has the potential to enable low-cost, flexible, high quality patterning for a wide variety of application in the field of micro- and nanotechnology, this technique can be leading to a promising solution for maskless lithography technique. A Scanning Electron Microscope (SEM), optical microscopy, Micro-Raman, Energy Dispersive X-ray (EDX) and X-ray diffraction spectroscopy were used to analyze the silicon oxide layer induced by laser pulses.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology, (Englewood Cliffs, NJ: Printice-Hall, 2000)
  2. A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
    [CrossRef] [PubMed]
  3. M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
    [CrossRef]
  4. G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D. 37(11), 1569–1575 (2004).
    [CrossRef]
  5. A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
    [CrossRef]
  6. G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
    [CrossRef] [PubMed]
  7. D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
    [CrossRef] [PubMed]
  8. A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct patterning of silicon oxide on Si-substrate induced by femtosecond laser,” Opt. Express 18(3), 1872–1878 (2010).
    [CrossRef] [PubMed]
  9. J. R. Ell, T. A. Crosby, J. J. Peterson, K. R. Carter, and J. J. Watkins, “Formation of SiO2 air-gap patterns through scCO2 infusion of NIL patterned PHEMA,” Chem. Mater. 22(4), 1445–1451 (2010).
    [CrossRef]
  10. G. Della Giustina, M. Guglielmi, G. Brusatin, M. Prasciolu, and F. Romanato, “Electron beam writing of epoxy based sol–gel materials,” J. Sol-Gel Sci. Technol. 48(1-2), 212–216 (2008).
    [CrossRef]
  11. M. Floresarias, A. Castelo, C. Gomezreino, and G. Delafuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282(6), 1175–1178 (2009).
    [CrossRef]
  12. K. Aissou, M. Kogelschatz, T. Baron, and P. Gentile, “Self-assembled block polymer templates as high resolution lithographic masks,” Surf. Sci. 601(13), 2611–2614 (2007).
    [CrossRef]
  13. R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, “Mesoporous silicates prepared using preorganized templates in supercritical fluids,” Science 303(5657), 507–510 (2004).
    [CrossRef] [PubMed]
  14. D. Yin, S. Horiuchi, and T. Masuoka, “Lateral assembly of metal nanoparticles directed by nanodomain control in block copolymer thin films,” Chem. Mater. 17(3), 463–469 (2005).
    [CrossRef]
  15. E. J. Carvalho, M. A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J. 37(11), 1265–1270 (2006).
    [CrossRef]
  16. B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process. 95(2), 537–545 (2009).
    [CrossRef]
  17. C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, and Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17(22), 19981–19987 (2009).
    [CrossRef] [PubMed]
  18. K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
    [CrossRef]
  19. H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996).
    [CrossRef]
  20. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
    [CrossRef]
  21. J. T. Hastings, F. Zhang, and H. I. Smith, “Nanometer-level stitching in raster-scanning electron-beam lithography using spatial-phase locking,” J. Vac. Sci. Technol. B 21(6), 2650–2656 (2003).
    [CrossRef]
  22. B. Schmidt, L. Bischoff, and J. Teichert, “Writing FIB implantation and subsequent anisotropic wet chemical etching for fabrication of 3D structures in silicon,” Sens. Actuators A Phys. 61(1-3), 369–373 (1997).
    [CrossRef]
  23. G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
    [CrossRef]
  24. J. P. Spallas, C. S. Silver, and L. P. Muray, “Arrayed miniature electron beam columns for mask making,” J. Vac. Sci. Technol. B 24(6), 2892–2896 (2006).
    [CrossRef]
  25. M. E. Walsh and H. I. Smith, “Method for reducing hyperbolic phase in interference lithography,” J. Vac. Sci. Technol. B 19(6), 2347–2352 (2001).
    [CrossRef]
  26. P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
    [CrossRef]
  27. T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “Optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777–787 (2004).
    [CrossRef]
  28. I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater. 20(14), 4595–4601 (2008).
    [CrossRef]
  29. S. Krämer, R. R. Fuierer, and C. B. Gorman, “Scanning probe lithography using self-assembled monolayers,” Chem. Rev. 103(11), 4367–4418 (2003).
    [CrossRef] [PubMed]
  30. J. H. Wei and D. S. Ginger, “A direct-write single-step positive etch resist for dip-pen nanolithography,” Small 3(12), 2034–2037 (2007).
    [CrossRef] [PubMed]
  31. F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography andanisotropic wet etching,” Appl. Phys. Lett. 75(16), 2429–2431 (1999).
    [CrossRef]
  32. Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
    [CrossRef]
  33. D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, ““Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
    [CrossRef]
  34. N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, and K. Ashida, “Etch stop of silicon surface induced by tribo-nanolithography,” Nanotechnology 16(8), 1411–1414 (2005).
    [CrossRef]
  35. R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
    [CrossRef]
  36. N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
    [CrossRef]
  37. B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
    [CrossRef]
  38. J. Blanc, “Revised model for oxidation of Si by oxygen,” Appl. Phys. Lett. 33(5), 424–426 (1978).
    [CrossRef]
  39. V. K. Samalam, “Theoretical-model for the oxidation of silicon,” Appl. Phys. Lett. 47(7), 736–737 (1985).
    [CrossRef]
  40. A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984).
    [CrossRef]
  41. H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
    [CrossRef]
  42. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4222 (1999).
    [CrossRef]
  43. I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys., A Mater. Sci. Process. 67(4), 391–395 (1998).
    [CrossRef]
  44. S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
    [CrossRef]
  45. J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1–4), 215–230 (2004).
    [CrossRef]
  46. A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
    [CrossRef]
  47. H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
    [CrossRef]

2010

J. R. Ell, T. A. Crosby, J. J. Peterson, K. R. Carter, and J. J. Watkins, “Formation of SiO2 air-gap patterns through scCO2 infusion of NIL patterned PHEMA,” Chem. Mater. 22(4), 1445–1451 (2010).
[CrossRef]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct patterning of silicon oxide on Si-substrate induced by femtosecond laser,” Opt. Express 18(3), 1872–1878 (2010).
[CrossRef] [PubMed]

2009

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
[CrossRef] [PubMed]

C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, and Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17(22), 19981–19987 (2009).
[CrossRef] [PubMed]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process. 95(2), 537–545 (2009).
[CrossRef]

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

M. Floresarias, A. Castelo, C. Gomezreino, and G. Delafuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282(6), 1175–1178 (2009).
[CrossRef]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[CrossRef]

2008

G. Della Giustina, M. Guglielmi, G. Brusatin, M. Prasciolu, and F. Romanato, “Electron beam writing of epoxy based sol–gel materials,” J. Sol-Gel Sci. Technol. 48(1-2), 212–216 (2008).
[CrossRef]

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater. 20(14), 4595–4601 (2008).
[CrossRef]

2007

J. H. Wei and D. S. Ginger, “A direct-write single-step positive etch resist for dip-pen nanolithography,” Small 3(12), 2034–2037 (2007).
[CrossRef] [PubMed]

K. Aissou, M. Kogelschatz, T. Baron, and P. Gentile, “Self-assembled block polymer templates as high resolution lithographic masks,” Surf. Sci. 601(13), 2611–2614 (2007).
[CrossRef]

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

2006

J. P. Spallas, C. S. Silver, and L. P. Muray, “Arrayed miniature electron beam columns for mask making,” J. Vac. Sci. Technol. B 24(6), 2892–2896 (2006).
[CrossRef]

E. J. Carvalho, M. A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J. 37(11), 1265–1270 (2006).
[CrossRef]

2005

D. Yin, S. Horiuchi, and T. Masuoka, “Lateral assembly of metal nanoparticles directed by nanodomain control in block copolymer thin films,” Chem. Mater. 17(3), 463–469 (2005).
[CrossRef]

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, and K. Ashida, “Etch stop of silicon surface induced by tribo-nanolithography,” Nanotechnology 16(8), 1411–1414 (2005).
[CrossRef]

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[CrossRef]

2004

J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1–4), 215–230 (2004).
[CrossRef]

R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, “Mesoporous silicates prepared using preorganized templates in supercritical fluids,” Science 303(5657), 507–510 (2004).
[CrossRef] [PubMed]

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “Optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777–787 (2004).
[CrossRef]

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D. 37(11), 1569–1575 (2004).
[CrossRef]

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

2003

S. Krämer, R. R. Fuierer, and C. B. Gorman, “Scanning probe lithography using self-assembled monolayers,” Chem. Rev. 103(11), 4367–4418 (2003).
[CrossRef] [PubMed]

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
[CrossRef]

J. T. Hastings, F. Zhang, and H. I. Smith, “Nanometer-level stitching in raster-scanning electron-beam lithography using spatial-phase locking,” J. Vac. Sci. Technol. B 21(6), 2650–2656 (2003).
[CrossRef]

2002

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

2001

M. E. Walsh and H. I. Smith, “Method for reducing hyperbolic phase in interference lithography,” J. Vac. Sci. Technol. B 19(6), 2347–2352 (2001).
[CrossRef]

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

2000

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, ““Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

1999

F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography andanisotropic wet etching,” Appl. Phys. Lett. 75(16), 2429–2431 (1999).
[CrossRef]

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4222 (1999).
[CrossRef]

1998

I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys., A Mater. Sci. Process. 67(4), 391–395 (1998).
[CrossRef]

1997

B. Schmidt, L. Bischoff, and J. Teichert, “Writing FIB implantation and subsequent anisotropic wet chemical etching for fabrication of 3D structures in silicon,” Sens. Actuators A Phys. 61(1-3), 369–373 (1997).
[CrossRef]

1996

H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996).
[CrossRef]

1992

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

1985

V. K. Samalam, “Theoretical-model for the oxidation of silicon,” Appl. Phys. Lett. 47(7), 736–737 (1985).
[CrossRef]

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

1984

A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984).
[CrossRef]

1978

J. Blanc, “Revised model for oxidation of Si by oxygen,” Appl. Phys. Lett. 33(5), 424–426 (1978).
[CrossRef]

1965

B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[CrossRef]

1963

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Abe, T.

H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996).
[CrossRef]

Aissou, K.

K. Aissou, M. Kogelschatz, T. Baron, and P. Gentile, “Self-assembled block polymer templates as high resolution lithographic masks,” Surf. Sci. 601(13), 2611–2614 (2007).
[CrossRef]

Alacakir, A.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D. 37(11), 1569–1575 (2004).
[CrossRef]

Alves, M. A. R.

E. J. Carvalho, M. A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J. 37(11), 1265–1270 (2006).
[CrossRef]

Arai, S.

H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996).
[CrossRef]

Ashida, K.

N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, and K. Ashida, “Etch stop of silicon surface induced by tribo-nanolithography,” Nanotechnology 16(8), 1411–1414 (2005).
[CrossRef]

Asplund, M. C.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Atanassova, E.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D. 37(11), 1569–1575 (2004).
[CrossRef]

Atkinson, G. M.

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

Attavar, S.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Aygun, G.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D. 37(11), 1569–1575 (2004).
[CrossRef]

Baron, T.

K. Aissou, M. Kogelschatz, T. Baron, and P. Gentile, “Self-assembled block polymer templates as high resolution lithographic masks,” Surf. Sci. 601(13), 2611–2614 (2007).
[CrossRef]

Bischoff, L.

B. Schmidt, L. Bischoff, and J. Teichert, “Writing FIB implantation and subsequent anisotropic wet chemical etching for fabrication of 3D structures in silicon,” Sens. Actuators A Phys. 61(1-3), 369–373 (1997).
[CrossRef]

Blair, S.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Blanc, J.

J. Blanc, “Revised model for oxidation of Si by oxygen,” Appl. Phys. Lett. 33(5), 424–426 (1978).
[CrossRef]

Bleeker, A.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “Optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777–787 (2004).
[CrossRef]

Bonse, J.

J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1–4), 215–230 (2004).
[CrossRef]

Braga, E. S.

E. J. Carvalho, M. A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J. 37(11), 1265–1270 (2006).
[CrossRef]

Brezinka, K. W.

J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1–4), 215–230 (2004).
[CrossRef]

Briseno, A. L.

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater. 20(14), 4595–4601 (2008).
[CrossRef]

Brusatin, G.

G. Della Giustina, M. Guglielmi, G. Brusatin, M. Prasciolu, and F. Romanato, “Electron beam writing of epoxy based sol–gel materials,” J. Sol-Gel Sci. Technol. 48(1-2), 212–216 (2008).
[CrossRef]

Cao, S.

Carter, K. R.

J. R. Ell, T. A. Crosby, J. J. Peterson, K. R. Carter, and J. J. Watkins, “Formation of SiO2 air-gap patterns through scCO2 infusion of NIL patterned PHEMA,” Chem. Mater. 22(4), 1445–1451 (2010).
[CrossRef]

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater. 20(14), 4595–4601 (2008).
[CrossRef]

Carvalho, E. J.

E. J. Carvalho, M. A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J. 37(11), 1265–1270 (2006).
[CrossRef]

Castelo, A.

M. Floresarias, A. Castelo, C. Gomezreino, and G. Delafuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282(6), 1175–1178 (2009).
[CrossRef]

Cescato, L.

E. J. Carvalho, M. A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J. 37(11), 1265–1270 (2006).
[CrossRef]

Chang, C.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
[CrossRef]

Chen, C. G.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
[CrossRef]

Chen, T. T.

F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography andanisotropic wet etching,” Appl. Phys. Lett. 75(16), 2429–2431 (1999).
[CrossRef]

Chien, F. S. S.

F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography andanisotropic wet etching,” Appl. Phys. Lett. 75(16), 2429–2431 (1999).
[CrossRef]

Chou, Y. C.

F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography andanisotropic wet etching,” Appl. Phys. Lett. 75(16), 2429–2431 (1999).
[CrossRef]

Chung, K. H.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Cima, M. J.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Crosby, T. A.

J. R. Ell, T. A. Crosby, J. J. Peterson, K. R. Carter, and J. J. Watkins, “Formation of SiO2 air-gap patterns through scCO2 infusion of NIL patterned PHEMA,” Chem. Mater. 22(4), 1445–1451 (2010).
[CrossRef]

Dalili, A.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process. 95(2), 537–545 (2009).
[CrossRef]

Danielson, G. C.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Deal, B. E.

B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[CrossRef]

Degraeve, R.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

Delafuente, G.

M. Floresarias, A. Castelo, C. Gomezreino, and G. Delafuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282(6), 1175–1178 (2009).
[CrossRef]

Della Giustina, G.

G. Della Giustina, M. Guglielmi, G. Brusatin, M. Prasciolu, and F. Romanato, “Electron beam writing of epoxy based sol–gel materials,” J. Sol-Gel Sci. Technol. 48(1-2), 212–216 (2008).
[CrossRef]

Ell, J. R.

J. R. Ell, T. A. Crosby, J. J. Peterson, K. R. Carter, and J. J. Watkins, “Formation of SiO2 air-gap patterns through scCO2 infusion of NIL patterned PHEMA,” Chem. Mater. 22(4), 1445–1451 (2010).
[CrossRef]

Esfandyarpour, B.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Fan, Y.

Fang, Y.

Fargeix, A.

A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984).
[CrossRef]

Floresarias, M.

M. Floresarias, A. Castelo, C. Gomezreino, and G. Delafuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282(6), 1175–1178 (2009).
[CrossRef]

Flynn, N. T.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Freyer, J.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “Optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777–787 (2004).
[CrossRef]

Fuierer, R. R.

S. Krämer, R. R. Fuierer, and C. B. Gorman, “Scanning probe lithography using self-assembled monolayers,” Chem. Rev. 103(11), 4367–4418 (2003).
[CrossRef] [PubMed]

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4222 (1999).
[CrossRef]

Garfunkel, E. L.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

Gates, R.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Gentile, P.

K. Aissou, M. Kogelschatz, T. Baron, and P. Gentile, “Self-assembled block polymer templates as high resolution lithographic masks,” Surf. Sci. 601(13), 2611–2614 (2007).
[CrossRef]

Ghibaudo, G.

A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984).
[CrossRef]

Gil, D.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

Ginger, D. S.

J. H. Wei and D. S. Ginger, “A direct-write single-step positive etch resist for dip-pen nanolithography,” Small 3(12), 2034–2037 (2007).
[CrossRef] [PubMed]

Gomezreino, C.

M. Floresarias, A. Castelo, C. Gomezreino, and G. Delafuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282(6), 1175–1178 (2009).
[CrossRef]

Goodberlet, J. G.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

Gorman, C. B.

S. Krämer, R. R. Fuierer, and C. B. Gorman, “Scanning probe lithography using self-assembled monolayers,” Chem. Rev. 103(11), 4367–4418 (2003).
[CrossRef] [PubMed]

Grayson, A. C. R.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Green, M. L.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

Grove, A. S.

B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[CrossRef]

Guglielmi, M.

G. Della Giustina, M. Guglielmi, G. Brusatin, M. Prasciolu, and F. Romanato, “Electron beam writing of epoxy based sol–gel materials,” J. Sol-Gel Sci. Technol. 48(1-2), 212–216 (2008).
[CrossRef]

Guo, C. F.

Guo, C. L.

A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[CrossRef]

Gusev, E. P.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

Gwo, S.

F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography andanisotropic wet etching,” Appl. Phys. Lett. 75(16), 2429–2431 (1999).
[CrossRef]

Hashemi, P.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Hastings, J. T.

J. T. Hastings, F. Zhang, and H. I. Smith, “Nanometer-level stitching in raster-scanning electron-beam lithography using spatial-phase locking,” J. Vac. Sci. Technol. B 21(6), 2650–2656 (2003).
[CrossRef]

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

Heilmann, R. K.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
[CrossRef]

Hekmat-Shoar, B.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Higgins, T. B.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, ““Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Hintersteiner, J.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “Optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777–787 (2004).
[CrossRef]

Hong, S.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, ““Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Horiuchi, S.

D. Yin, S. Horiuchi, and T. Masuoka, “Lateral assembly of metal nanoparticles directed by nanodomain control in block copolymer thin films,” Chem. Mater. 17(3), 463–469 (2005).
[CrossRef]

Hsieh, W. F.

F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography andanisotropic wet etching,” Appl. Phys. Lett. 75(16), 2429–2431 (1999).
[CrossRef]

Humayun, R.

R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, “Mesoporous silicates prepared using preorganized templates in supercritical fluids,” Science 303(5657), 507–510 (2004).
[CrossRef] [PubMed]

Irene, E. A.

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

Jiang, P.

Johnson, A. M.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Joo, C.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
[CrossRef]

Kai, J.

H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996).
[CrossRef]

Kawasegi, N.

N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, and K. Ashida, “Etch stop of silicon surface induced by tribo-nanolithography,” Nanotechnology 16(8), 1411–1414 (2005).
[CrossRef]

Kiani, A.

Kim, K.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Kim, S. J.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Kim, Y. T.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Kiuchi, T.

H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996).
[CrossRef]

Kogelschatz, M.

K. Aissou, M. Kogelschatz, T. Baron, and P. Gentile, “Self-assembled block polymer templates as high resolution lithographic masks,” Surf. Sci. 601(13), 2611–2614 (2007).
[CrossRef]

Konkola, P. T.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
[CrossRef]

Krämer, S.

S. Krämer, R. R. Fuierer, and C. B. Gorman, “Scanning probe lithography using self-assembled monolayers,” Chem. Rev. 103(11), 4367–4418 (2003).
[CrossRef] [PubMed]

Kubena, R. L.

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

Langer, R.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Lee, D. S.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Li, Y.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Lim, L. E. N.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Lim, M. H.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

Linford, M. R.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Liu, Q.

Liu, Z. F.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Loser, S.

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater. 20(14), 4595–4601 (2008).
[CrossRef]

Luo, G.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4222 (1999).
[CrossRef]

Maruyama, S.

H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996).
[CrossRef]

Massoud, H. Z.

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

Masuoka, T.

D. Yin, S. Horiuchi, and T. Masuoka, “Lateral assembly of metal nanoparticles directed by nanodomain control in block copolymer thin films,” Chem. Mater. 17(3), 463–469 (2005).
[CrossRef]

Maycock, P. D.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Meixner, A. J.

J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1–4), 215–230 (2004).
[CrossRef]

Menon, R.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

Mirkin, C. A.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, ““Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Mohajerzadeh, S.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Montoya, J. C.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
[CrossRef]

Moran, I. W.

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater. 20(14), 4595–4601 (2008).
[CrossRef]

Morita, N.

N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, and K. Ashida, “Etch stop of silicon surface induced by tribo-nanolithography,” Nanotechnology 16(8), 1411–1414 (2005).
[CrossRef]

Muray, L. P.

J. P. Spallas, C. S. Silver, and L. P. Muray, “Arrayed miniature electron beam columns for mask making,” J. Vac. Sci. Technol. B 24(6), 2892–2896 (2006).
[CrossRef]

Ngoi, B. K. A.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Ooae, Y.

H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996).
[CrossRef]

Oyama, T.

N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, and K. Ashida, “Etch stop of silicon surface induced by tribo-nanolithography,” Nanotechnology 16(8), 1411–1414 (2005).
[CrossRef]

Ozyuzer, L.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D. 37(11), 1569–1575 (2004).
[CrossRef]

Pai, R. A.

R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, “Mesoporous silicates prepared using preorganized templates in supercritical fluids,” Science 303(5657), 507–510 (2004).
[CrossRef] [PubMed]

Panchatsharam, S.

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[CrossRef]

Park, S. H.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Patel, A.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

Peterson, J. J.

J. R. Ell, T. A. Crosby, J. J. Peterson, K. R. Carter, and J. J. Watkins, “Formation of SiO2 air-gap patterns through scCO2 infusion of NIL patterned PHEMA,” Chem. Mater. 22(4), 1445–1451 (2010).
[CrossRef]

Plummer, J. D.

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

Prasciolu, M.

G. Della Giustina, M. Guglielmi, G. Brusatin, M. Prasciolu, and F. Romanato, “Electron beam writing of epoxy based sol–gel materials,” J. Sol-Gel Sci. Technol. 48(1-2), 212–216 (2008).
[CrossRef]

Robertson, M. D.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Rode, A. V.

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4222 (1999).
[CrossRef]

Romanato, F.

G. Della Giustina, M. Guglielmi, G. Brusatin, M. Prasciolu, and F. Romanato, “Electron beam writing of epoxy based sol–gel materials,” J. Sol-Gel Sci. Technol. 48(1-2), 212–216 (2008).
[CrossRef]

Rouhi, N.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Saini, G.

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

Samalam, V. K.

V. K. Samalam, “Theoretical-model for the oxidation of silicon,” Appl. Phys. Lett. 47(7), 736–737 (1985).
[CrossRef]

Sandstrom, T.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “Optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777–787 (2004).
[CrossRef]

Schattenburg, M. L.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
[CrossRef]

Schmidt, B.

B. Schmidt, L. Bischoff, and J. Teichert, “Writing FIB implantation and subsequent anisotropic wet chemical etching for fabrication of 3D structures in silicon,” Sens. Actuators A Phys. 61(1-3), 369–373 (1997).
[CrossRef]

Schulberg, M. T.

R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, “Mesoporous silicates prepared using preorganized templates in supercritical fluids,” Science 303(5657), 507–510 (2004).
[CrossRef] [PubMed]

Sengupta, A.

R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, “Mesoporous silicates prepared using preorganized templates in supercritical fluids,” Science 303(5657), 507–510 (2004).
[CrossRef] [PubMed]

Shanks, H. R.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Shawgo, R. S.

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Sidles, P. H.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Silver, C. S.

J. P. Spallas, C. S. Silver, and L. P. Muray, “Arrayed miniature electron beam columns for mask making,” J. Vac. Sci. Technol. B 24(6), 2892–2896 (2006).
[CrossRef]

Sivakumar, N. R.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Smith, H. I.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

J. T. Hastings, F. Zhang, and H. I. Smith, “Nanometer-level stitching in raster-scanning electron-beam lithography using spatial-phase locking,” J. Vac. Sci. Technol. B 21(6), 2650–2656 (2003).
[CrossRef]

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

M. E. Walsh and H. I. Smith, “Method for reducing hyperbolic phase in interference lithography,” J. Vac. Sci. Technol. B 19(6), 2347–2352 (2001).
[CrossRef]

Spallas, J. P.

J. P. Spallas, C. S. Silver, and L. P. Muray, “Arrayed miniature electron beam columns for mask making,” J. Vac. Sci. Technol. B 24(6), 2892–2896 (2006).
[CrossRef]

Stanley, P.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Stratton, F. P.

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

Stuke, M.

I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys., A Mater. Sci. Process. 67(4), 391–395 (1998).
[CrossRef]

Sun, J. N.

R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, “Mesoporous silicates prepared using preorganized templates in supercritical fluids,” Science 303(5657), 507–510 (2004).
[CrossRef] [PubMed]

Takano, N.

N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, and K. Ashida, “Etch stop of silicon surface induced by tribo-nanolithography,” Nanotechnology 16(8), 1411–1414 (2005).
[CrossRef]

Tan, B.

A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct patterning of silicon oxide on Si-substrate induced by femtosecond laser,” Opt. Express 18(3), 1872–1878 (2010).
[CrossRef] [PubMed]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
[CrossRef] [PubMed]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process. 95(2), 537–545 (2009).
[CrossRef]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[CrossRef]

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Teichert, J.

B. Schmidt, L. Bischoff, and J. Teichert, “Writing FIB implantation and subsequent anisotropic wet chemical etching for fabrication of 3D structures in silicon,” Sens. Actuators A Phys. 61(1-3), 369–373 (1997).
[CrossRef]

Troost, K.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “Optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777–787 (2004).
[CrossRef]

Turan, R.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D. 37(11), 1569–1575 (2004).
[CrossRef]

van der Mast, K.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “Optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777–787 (2004).
[CrossRef]

Venkatakrishnan, K.

A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct patterning of silicon oxide on Si-substrate induced by femtosecond laser,” Opt. Express 18(3), 1872–1878 (2010).
[CrossRef] [PubMed]

A. Kiani, K. Venkatakrishnan, and B. Tan, “Micro/nano scale amorphization of silicon by femtosecond laser irradiation,” Opt. Express 17(19), 16518–16526 (2009).
[CrossRef] [PubMed]

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[CrossRef]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process. 95(2), 537–545 (2009).
[CrossRef]

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[CrossRef]

Walsh, M. E.

M. E. Walsh and H. I. Smith, “Method for reducing hyperbolic phase in interference lithography,” J. Vac. Sci. Technol. B 19(6), 2347–2352 (2001).
[CrossRef]

Wang, Y.

Watkins, J. J.

J. R. Ell, T. A. Crosby, J. J. Peterson, K. R. Carter, and J. J. Watkins, “Formation of SiO2 air-gap patterns through scCO2 infusion of NIL patterned PHEMA,” Chem. Mater. 22(4), 1445–1451 (2010).
[CrossRef]

R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, “Mesoporous silicates prepared using preorganized templates in supercritical fluids,” Science 303(5657), 507–510 (2004).
[CrossRef] [PubMed]

Wei, J. H.

J. H. Wei and D. S. Ginger, “A direct-write single-step positive etch resist for dip-pen nanolithography,” Small 3(12), 2034–2037 (2007).
[CrossRef] [PubMed]

Weinberger, D. A.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, ““Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Wessels, B. W.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, ““Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Wolfe, J. C.

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

Wu, C. L.

F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography andanisotropic wet etching,” Appl. Phys. Lett. 75(16), 2429–2431 (1999).
[CrossRef]

Xie, G. Y.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Xu, W.

Yamada, S.

N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, and K. Ashida, “Etch stop of silicon surface induced by tribo-nanolithography,” Nanotechnology 16(8), 1411–1414 (2005).
[CrossRef]

Yang, H. S.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Yasuda, H.

H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996).
[CrossRef]

Yin, D.

D. Yin, S. Horiuchi, and T. Masuoka, “Lateral assembly of metal nanoparticles directed by nanodomain control in block copolymer thin films,” Chem. Mater. 17(3), 463–469 (2005).
[CrossRef]

Yoon, T. H.

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Zergioti, I.

I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys., A Mater. Sci. Process. 67(4), 391–395 (1998).
[CrossRef]

Zhang, F.

J. T. Hastings, F. Zhang, and H. I. Smith, “Nanometer-level stitching in raster-scanning electron-beam lithography using spatial-phase locking,” J. Vac. Sci. Technol. B 21(6), 2650–2656 (2003).
[CrossRef]

Zhang, J.

C. F. Guo, S. Cao, P. Jiang, Y. Fang, J. Zhang, Y. Fan, Y. Wang, W. Xu, Z. Zhao, and Q. Liu, “Grayscale photomask fabricated by laser direct writing in metallic nano-films,” Opt. Express 17(22), 19981–19987 (2009).
[CrossRef] [PubMed]

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Zhang, Y. Y.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Zhao, Z.

Zhou, X.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Zhu, T.

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Adv. Mater.

D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, ““Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000).
[CrossRef]

Appl. Phys. Lett.

F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography andanisotropic wet etching,” Appl. Phys. Lett. 75(16), 2429–2431 (1999).
[CrossRef]

J. Blanc, “Revised model for oxidation of Si by oxygen,” Appl. Phys. Lett. 33(5), 424–426 (1978).
[CrossRef]

V. K. Samalam, “Theoretical-model for the oxidation of silicon,” Appl. Phys. Lett. 47(7), 736–737 (1985).
[CrossRef]

A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

I. Zergioti and M. Stuke, “Short pulse UV laser ablation of solid and liquid gallium,” Appl. Phys., A Mater. Sci. Process. 67(4), 391–395 (1998).
[CrossRef]

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002).
[CrossRef]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys., A Mater. Sci. Process. 95(2), 537–545 (2009).
[CrossRef]

Appl. Surf. Sci.

J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1–4), 215–230 (2004).
[CrossRef]

Chem. Mater.

J. R. Ell, T. A. Crosby, J. J. Peterson, K. R. Carter, and J. J. Watkins, “Formation of SiO2 air-gap patterns through scCO2 infusion of NIL patterned PHEMA,” Chem. Mater. 22(4), 1445–1451 (2010).
[CrossRef]

I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, “Device fabrication by easy soft imprint nano-lithography,” Chem. Mater. 20(14), 4595–4601 (2008).
[CrossRef]

D. Yin, S. Horiuchi, and T. Masuoka, “Lateral assembly of metal nanoparticles directed by nanodomain control in block copolymer thin films,” Chem. Mater. 17(3), 463–469 (2005).
[CrossRef]

Chem. Rev.

S. Krämer, R. R. Fuierer, and C. B. Gorman, “Scanning probe lithography using self-assembled monolayers,” Chem. Rev. 103(11), 4367–4418 (2003).
[CrossRef] [PubMed]

J. Appl. Phys.

S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009).
[CrossRef]

B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[CrossRef]

E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85(8), 4213–4222 (1999).
[CrossRef]

A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984).
[CrossRef]

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001).
[CrossRef]

J. Electrochem. Soc.

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

J. Phys. D.

G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D. 37(11), 1569–1575 (2004).
[CrossRef]

J. Sol-Gel Sci. Technol.

G. Della Giustina, M. Guglielmi, G. Brusatin, M. Prasciolu, and F. Romanato, “Electron beam writing of epoxy based sol–gel materials,” J. Sol-Gel Sci. Technol. 48(1-2), 212–216 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

H. Yasuda, S. Arai, J. Kai, Y. Ooae, T. Abe, S. Maruyama, and T. Kiuchi, “Multielectron beam blanking aperture array system SYNAPSE-2000,” J. Vac. Sci. Technol. B 14(6), 3813–3820 (1996).
[CrossRef]

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

J. T. Hastings, F. Zhang, and H. I. Smith, “Nanometer-level stitching in raster-scanning electron-beam lithography using spatial-phase locking,” J. Vac. Sci. Technol. B 21(6), 2650–2656 (2003).
[CrossRef]

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

J. P. Spallas, C. S. Silver, and L. P. Muray, “Arrayed miniature electron beam columns for mask making,” J. Vac. Sci. Technol. B 24(6), 2892–2896 (2006).
[CrossRef]

M. E. Walsh and H. I. Smith, “Method for reducing hyperbolic phase in interference lithography,” J. Vac. Sci. Technol. B 19(6), 2347–2352 (2001).
[CrossRef]

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the nanoruler,” J. Vac. Sci. Technol. B 21(6), 3097–3101 (2003).
[CrossRef]

Lab Chip

G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009).
[CrossRef] [PubMed]

D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004).
[CrossRef] [PubMed]

Mater. Res. Soc. Symp. Proc.

N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007).
[CrossRef]

Mater. Today

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

Microelectron. J.

E. J. Carvalho, M. A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J. 37(11), 1265–1270 (2006).
[CrossRef]

Nanotechnology

N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, and K. Ashida, “Etch stop of silicon surface induced by tribo-nanolithography,” Nanotechnology 16(8), 1411–1414 (2005).
[CrossRef]

Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005).
[CrossRef]

Opt. Commun.

M. Floresarias, A. Castelo, C. Gomezreino, and G. Delafuente, “Phase diffractive optical gratings on glass substrates by laser ablation,” Opt. Commun. 282(6), 1175–1178 (2009).
[CrossRef]

Opt. Express

Phys. Rev.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963).
[CrossRef]

Proc. IEEE

A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004).
[CrossRef]

Proc. SPIE

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “Optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777–787 (2004).
[CrossRef]

Science

R. A. Pai, R. Humayun, M. T. Schulberg, A. Sengupta, J. N. Sun, and J. J. Watkins, “Mesoporous silicates prepared using preorganized templates in supercritical fluids,” Science 303(5657), 507–510 (2004).
[CrossRef] [PubMed]

Sens. Actuators A Phys.

B. Schmidt, L. Bischoff, and J. Teichert, “Writing FIB implantation and subsequent anisotropic wet chemical etching for fabrication of 3D structures in silicon,” Sens. Actuators A Phys. 61(1-3), 369–373 (1997).
[CrossRef]

Small

J. H. Wei and D. S. Ginger, “A direct-write single-step positive etch resist for dip-pen nanolithography,” Small 3(12), 2034–2037 (2007).
[CrossRef] [PubMed]

Surf. Sci.

K. Aissou, M. Kogelschatz, T. Baron, and P. Gentile, “Self-assembled block polymer templates as high resolution lithographic masks,” Surf. Sci. 601(13), 2611–2614 (2007).
[CrossRef]

Other

D. J. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology, (Englewood Cliffs, NJ: Printice-Hall, 2000)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a) conventional lithography method, b) direct (single-step) silicon oxide patterning, c) direct maskless lithography induced by fs laser.

Fig. 2
Fig. 2

SEM images of silicon oxide pattern induced by 214 fs laser pulses at the frequency of 26 MHz and the average power of 3.3 W (I = 0.15 J/cm2).

Fig. 3
Fig. 3

Optical microscope topography and cross sectional images (a) after irradiation (height: 500nm) and (b) after etching process (height: 1000 nm).

Fig. 4
Fig. 4

EDX results of irradiated area.

Fig. 5
Fig. 5

micro-Raman spectroscopy results of irradiated samples before/after etching process.

Fig. 6
Fig. 6

XRD results of pre/post-irradiated samples. XRD spectrum of pre-irradiated area is dominated by the signals at 2Ѳ = 28, 56 and 47 (zoomed chart) which corresponds to crystalline silicon. The XRD measurements on the processed samples shows only a peak shifted to lower level of intensity at 2Ѳ = 56.

Fig. 7
Fig. 7

SEM images of silicon oxide pattern after etching in KOH (30%) at 65°C after 5 min.

Fig. 8
Fig. 8

Computed results for average surface temperature vs. number of pulses (f = 26 MHz, tpp = 214 fs, P = 3.3 W).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( x , t ) = k a π 0 t p I a ( τ ) t τ exp { x 2 2 a ( t τ ) } d τ .
T n = 1 n ( t p + t p p ) 0 n ( t p + t p p ) T ( 0 , t ) d t = 2 α ( 1 2 3 α ) T m ( 1 + α 2 ) ( 1 α ) ( 1 + α n α n ( 1 α ) ) .

Metrics