Abstract

We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode with a Mode-Field-Diameter (MFD) of 59μm. We further demonstrate high pulse energy Second-Harmonic-Generation (SHG) and Third Harmonic Generation (THG) using a simple Q-switched single-stage rod fiber laser cavity architecture reaching pulse energies up to 1mJ at 515nm and 0.5mJ at 343nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63– B92 (2010).
    [CrossRef]
  2. C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
    [CrossRef]
  3. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [CrossRef] [PubMed]
  4. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
    [CrossRef] [PubMed]
  5. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
    [CrossRef] [PubMed]
  6. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32(11), 1551–1553 (2007).
    [CrossRef] [PubMed]
  7. J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P.-J. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm”, Proc. SPIE 7580, (2010).
  8. R. Bello-Doua, F. Salin, and E. Freysz, “Harmonics Generation from rod-type Yb doped fiber laser” Proceeding of IEEE Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008.
  9. T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier,” Opt. Express 19(8), 7398–7409 (2011).
    [CrossRef] [PubMed]

2011

2010

2007

2006

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006).
[CrossRef] [PubMed]

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

2005

Alkeskjold, T. T.

Andersen, T. V.

Broeng, J.

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

Clarkson, W. A.

Deguil-Robin, N.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

Eidam, T.

Ermeneux, S.

Gabler, T.

Hanf, S.

Jakobsen, C.

Laurila, M.

Liem, A.

Limpert, J.

Linke, S.

Manek-Hönninger, I.

Nilsson, J.

Nolte, S.

Petersson, A.

Rademaker, K.

Richardson, D. J.

Röser, F.

Rothhardt, J.

Salin, F.

Schmidt, O.

Schreiber, T.

Scolari, L.

Seise, E.

Tünnermann, A.

Wirth, C.

Yvernault, P.

Zellmer, H.

Appl. Phys. Lett.

C. D. Brooks and F. Di Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P.-J. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm”, Proc. SPIE 7580, (2010).

R. Bello-Doua, F. Salin, and E. Freysz, “Harmonics Generation from rod-type Yb doped fiber laser” Proceeding of IEEE Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Transmission measurement of a passive DMF rod fiber with 85um core diameter. The measurement shows several interference patterns and indicates a SM region in the range 1050-1070nm. Sketched effective mode indices of the FM and HOM core mode together with the band of cladding modes as a function of wavelength are illustrated in the same figure. Measured near field images for different guiding regimes are also shown.

Fig. 2
Fig. 2

The Distributed-Mode-Filtering rod fiber design. (a) Schematic of the rod fiber illustrating an Ytterbium-doped core and the high-index elements (Germanium) arranged in a honeycomb lattice. (b) Optical micrograph of a manufactured fiber, only showing the central region.

Fig. 3
Fig. 3

Near-Field images of the Ytterbium-doped DMF rod fiber at 1032nm wavelength. The input beam is moved along the x (top row) and y (bottom row) direction and no HOMs are excited.

Fig. 4
Fig. 4

Schematic of the laser cavity setup.

Fig. 5
Fig. 5

Slope efficiency measurement of the DMF rod fiber, in a laser cavity (CW) configuration formed with a flat HR mirror. Insets show the NF and FF images at 110W output power.

Fig. 6
Fig. 6

Slope efficiency measurement of the DMF rod fiber, in a Q-switched laser cavity configuration formed with a flat HR mirror. Insets show the NF and FF images at 80W of average output power. The slope efficiency measurement was performed at 100 kHz repetition rate and the pulse width was measured to be 21ns at the highest power level.

Fig. 7
Fig. 7

Recorded output spectrum of the laser cavity at 33W of output power, with 20 kHz repetition rate, pulse width of 14ns and FWHM ~0.4nm. The inset shows a slope efficiency measurement together with NF and FF images at 33W of average output power. The slope efficiency measurement was performed with 20 kHz repetition rate and pulse length being 14ns at the highest power level.

Fig. 8
Fig. 8

Maximum reached average and pulse energy of the SM DMF rod fiber after SHG at 515nm as a function of repetition rate.

Fig. 9
Fig. 9

Slope efficiency of the harmonic generations from IR to green light.

Fig. 10
Fig. 10

Typical M2 measurement result from SHG, with 0.7mJ pulse energy, 10 kHz repetition rate and 14ns pulse width.

Fig. 11
Fig. 11

Third harmonic generation at 343nm with different repetition rates. (a) Maximum reached pulse energy. (b) Measured pulse widths.

Metrics