Abstract

We report on a method to study the dynamics of triplet formation based on the fluorescence signal produced by a pulse train. Basically, the pulse train acts as sequential pump-probe pulses that precisely map the excited-state dynamics in the long time scale. This allows characterizing those processes that affect the population evolution of the first excited singlet state, whose decay gives rise to the fluorescence. The technique was proven to be valuable to measure parameters of triplet formation in organic molecules. Additionally, this single beam technique has the advantages of simplicity, low noise and background-free signal detection.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Pogue, T. Momma, H. C. Wu, and T. Hasan, “Transient absorption changes in vivo during photodynamic therapy with pulsed-laser light,” Br. J. Cancer 80(3-4), 344–351 (1999).
    [CrossRef] [PubMed]
  2. M. E. Thompson, “The evolution of organometallic complexes in organic light-emitting devices,” Mater. Res. Bull. 32(09), 694–701 (2007).
    [CrossRef]
  3. B. W. Pogue, B. Ortel, N. Chen, R. W. Redmond, and T. Hasan, “A photobiological and photophysical-based study of phototoxicity of two chlorins,” Cancer Res. 61(2), 717–724 (2001).
    [PubMed]
  4. W. R. Dawson and M. Windsor, “An eye protective panel for flash-blindness protection using triplet state photochromism,” Appl. Opt. 8(5), 1045–1050 (1969).
    [CrossRef] [PubMed]
  5. P. Miles, “Bottleneck optical pulse limiters revisited,” Appl. Opt. 38(3), 566–570 (1999).
    [CrossRef]
  6. J. H. Chou, M. E. Kosal, H. S. Nalwa, N. A. Rakow, and K. S. Suslick, “Applications of porphyrins and metalloporphyrins to materials chemistry,” in The Porphyrin Handbook, K. Kadish, K. Smith, and R. Guillard, eds. (Academic Press, 2000), Chap. 41.
  7. S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
    [CrossRef]
  8. T. G. Pavlopoulos, “Measurement of molar triplet extinction coefficients of organic-molecules by means of cw laser excitation,” J. Opt. Soc. Am. 63(2), 180–184 (1973).
    [CrossRef]
  9. S. Speiser and M. Orenstein, “Spatial light modulation via optically induced absorption changes in molecules,” Appl. Opt. 27(14), 2944–2948 (1988).
    [CrossRef] [PubMed]
  10. A. R. Horrocks, T. Medinger, and F. Wilkinson, “Solvent dependence of quantum yield of triplet state production of 9-phenylanthracene,” Photochem. Photobiol. 6(1), 21–28 (1967).
    [CrossRef]
  11. G. Burdzinski, M. Bayda, G. L. Hug, M. Majchrzak, B. Marciniec, and B. Marciniak, “Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state,” J. Lumin. 131(4), 577–580 (2011).
    [CrossRef]
  12. M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, “Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies,” Chemistry 4(11), 2299–2307 (1998).
    [CrossRef]
  13. B. Fletcher and J. J. Grabowski, “Photoacoustic calorimetry—an undergraduate physical-organic experiment,” J. Chem. Educ. 77(5), 640–645 (2000).
    [CrossRef]
  14. Y. Harada, T. Suzuki, T. Ichimura, and Y. Z. Xu, “Triplet formation of 4-thiothymidine and its photosensitization to oxygen studied by time-resolved thermal lensing technique,” J. Phys. Chem. B 111(19), 5518–5524 (2007).
    [CrossRef] [PubMed]
  15. T. Suzuki, U. Okuyama, and T. Ichimura, “Double proton transfer reaction of 7-azaindole dimer and complexes studied by time-resolved thermal lensing technique,” J. Phys. Chem. A 101(38), 7047–7052 (1997).
    [CrossRef]
  16. L. Misoguti, C. R. Mendonca, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74(11), 1531–1533 (1999).
    [CrossRef]
  17. C. R. Mendonça, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, and S. C. Zilio, “Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution,” Chem. Phys. Lett. 323(3-4), 300–304 (2000).
    [CrossRef]
  18. P. Goncalves, L. Boni, N. Neto, J. Rodrigues, S. Zilio, and I. Borissevitch, “Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin,” Chem. Phys. Lett. 407(1-3), 236–241 (2005).
    [CrossRef]
  19. P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
    [CrossRef]
  20. P. J. Gonçalves, L. De Boni, I. E. Borissevitch, and S. C. Zílio, “Excited state dynamics of meso-tetra(sulphonatophenyl) metalloporphyrins,” J. Phys. Chem. A 112(29), 6522–6526 (2008).
    [CrossRef] [PubMed]
  21. P. L. Franzen, L. Misoguti, and S. C. Zilio, “Hyper-Rayleigh scattering with picosecond pulse trains,” Appl. Opt. 47(10), 1443–1446 (2008).
    [CrossRef] [PubMed]
  22. S. Reindl and A. Penzkofer, “Triplet quantum yield determination by picosecond laser double-pulse fluorescence excitation,” Chem. Phys. 213(1-3), 429–438 (1996).
    [CrossRef]
  23. S. Reindl and A. Penzkofer, “Higher excited-state triplet-singlet intersystem crossing of some organic dyes,” Chem. Phys. 211(1-3), 431–439 (1996).
    [CrossRef]
  24. N. K. M. N. Srinivas, S. V. Rao, and D. N. Rao, “Saturable and reverse saturable absorption of Rhodamine B in methanol and water,” J. Opt. Soc. Am. B 20(12), 2470–2479 (2003).
    [CrossRef]
  25. P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser-dyes - picosecond laser flash-photolysis studies of rhodamine-6g, rhodamine-b and rhodamine-101,” J. Chem. Soc., Faraday Trans. 89(23), 4185–4191 (1993).
    [CrossRef]
  26. M. Enescu, K. Steenkeste, F. Tfibel, and M.-P. Fontaine-Aupart, “Femtosecond relaxation processes from upper excited states of tetrakis(N-methyl-4-pyridyl)porphyrins studied by transient absorption spectroscopy,” Phys. Chem. Chem. Phys. 4(24), 6092–6099 (2002).
    [CrossRef]
  27. P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

2011 (1)

G. Burdzinski, M. Bayda, G. L. Hug, M. Majchrzak, B. Marciniec, and B. Marciniak, “Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state,” J. Lumin. 131(4), 577–580 (2011).
[CrossRef]

2008 (3)

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

P. J. Gonçalves, L. De Boni, I. E. Borissevitch, and S. C. Zílio, “Excited state dynamics of meso-tetra(sulphonatophenyl) metalloporphyrins,” J. Phys. Chem. A 112(29), 6522–6526 (2008).
[CrossRef] [PubMed]

P. L. Franzen, L. Misoguti, and S. C. Zilio, “Hyper-Rayleigh scattering with picosecond pulse trains,” Appl. Opt. 47(10), 1443–1446 (2008).
[CrossRef] [PubMed]

2007 (2)

M. E. Thompson, “The evolution of organometallic complexes in organic light-emitting devices,” Mater. Res. Bull. 32(09), 694–701 (2007).
[CrossRef]

Y. Harada, T. Suzuki, T. Ichimura, and Y. Z. Xu, “Triplet formation of 4-thiothymidine and its photosensitization to oxygen studied by time-resolved thermal lensing technique,” J. Phys. Chem. B 111(19), 5518–5524 (2007).
[CrossRef] [PubMed]

2006 (1)

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

2005 (1)

P. Goncalves, L. Boni, N. Neto, J. Rodrigues, S. Zilio, and I. Borissevitch, “Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin,” Chem. Phys. Lett. 407(1-3), 236–241 (2005).
[CrossRef]

2003 (1)

2002 (1)

M. Enescu, K. Steenkeste, F. Tfibel, and M.-P. Fontaine-Aupart, “Femtosecond relaxation processes from upper excited states of tetrakis(N-methyl-4-pyridyl)porphyrins studied by transient absorption spectroscopy,” Phys. Chem. Chem. Phys. 4(24), 6092–6099 (2002).
[CrossRef]

2001 (1)

B. W. Pogue, B. Ortel, N. Chen, R. W. Redmond, and T. Hasan, “A photobiological and photophysical-based study of phototoxicity of two chlorins,” Cancer Res. 61(2), 717–724 (2001).
[PubMed]

2000 (2)

C. R. Mendonça, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, and S. C. Zilio, “Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution,” Chem. Phys. Lett. 323(3-4), 300–304 (2000).
[CrossRef]

B. Fletcher and J. J. Grabowski, “Photoacoustic calorimetry—an undergraduate physical-organic experiment,” J. Chem. Educ. 77(5), 640–645 (2000).
[CrossRef]

1999 (3)

L. Misoguti, C. R. Mendonca, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74(11), 1531–1533 (1999).
[CrossRef]

B. W. Pogue, T. Momma, H. C. Wu, and T. Hasan, “Transient absorption changes in vivo during photodynamic therapy with pulsed-laser light,” Br. J. Cancer 80(3-4), 344–351 (1999).
[CrossRef] [PubMed]

P. Miles, “Bottleneck optical pulse limiters revisited,” Appl. Opt. 38(3), 566–570 (1999).
[CrossRef]

1998 (1)

M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, “Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies,” Chemistry 4(11), 2299–2307 (1998).
[CrossRef]

1997 (1)

T. Suzuki, U. Okuyama, and T. Ichimura, “Double proton transfer reaction of 7-azaindole dimer and complexes studied by time-resolved thermal lensing technique,” J. Phys. Chem. A 101(38), 7047–7052 (1997).
[CrossRef]

1996 (2)

S. Reindl and A. Penzkofer, “Triplet quantum yield determination by picosecond laser double-pulse fluorescence excitation,” Chem. Phys. 213(1-3), 429–438 (1996).
[CrossRef]

S. Reindl and A. Penzkofer, “Higher excited-state triplet-singlet intersystem crossing of some organic dyes,” Chem. Phys. 211(1-3), 431–439 (1996).
[CrossRef]

1993 (1)

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser-dyes - picosecond laser flash-photolysis studies of rhodamine-6g, rhodamine-b and rhodamine-101,” J. Chem. Soc., Faraday Trans. 89(23), 4185–4191 (1993).
[CrossRef]

1988 (1)

1973 (1)

1969 (1)

1967 (1)

A. R. Horrocks, T. Medinger, and F. Wilkinson, “Solvent dependence of quantum yield of triplet state production of 9-phenylanthracene,” Photochem. Photobiol. 6(1), 21–28 (1967).
[CrossRef]

Aggarwal, L. P. F.

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

Almeida, L. M.

P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

Arnaut, L. G.

M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, “Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies,” Chemistry 4(11), 2299–2307 (1998).
[CrossRef]

Bayda, M.

G. Burdzinski, M. Bayda, G. L. Hug, M. Majchrzak, B. Marciniec, and B. Marciniak, “Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state,” J. Lumin. 131(4), 577–580 (2011).
[CrossRef]

Beaumont, P. C.

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser-dyes - picosecond laser flash-photolysis studies of rhodamine-6g, rhodamine-b and rhodamine-101,” J. Chem. Soc., Faraday Trans. 89(23), 4185–4191 (1993).
[CrossRef]

Boni, L.

P. Goncalves, L. Boni, N. Neto, J. Rodrigues, S. Zilio, and I. Borissevitch, “Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin,” Chem. Phys. Lett. 407(1-3), 236–241 (2005).
[CrossRef]

Borissevitch, I.

P. Goncalves, L. Boni, N. Neto, J. Rodrigues, S. Zilio, and I. Borissevitch, “Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin,” Chem. Phys. Lett. 407(1-3), 236–241 (2005).
[CrossRef]

Borissevitch, I. E.

P. J. Gonçalves, L. De Boni, I. E. Borissevitch, and S. C. Zílio, “Excited state dynamics of meso-tetra(sulphonatophenyl) metalloporphyrins,” J. Phys. Chem. A 112(29), 6522–6526 (2008).
[CrossRef] [PubMed]

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

Burdzinski, G.

G. Burdzinski, M. Bayda, G. L. Hug, M. Majchrzak, B. Marciniec, and B. Marciniak, “Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state,” J. Lumin. 131(4), 577–580 (2011).
[CrossRef]

Carvalho, A. L.

M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, “Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies,” Chemistry 4(11), 2299–2307 (1998).
[CrossRef]

Chen, N.

B. W. Pogue, B. Ortel, N. Chen, R. W. Redmond, and T. Hasan, “A photobiological and photophysical-based study of phototoxicity of two chlorins,” Cancer Res. 61(2), 717–724 (2001).
[PubMed]

Correa, D. S.

P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

Da Como, E.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Dawson, W. R.

De Boni, L.

P. J. Gonçalves, L. De Boni, I. E. Borissevitch, and S. C. Zílio, “Excited state dynamics of meso-tetra(sulphonatophenyl) metalloporphyrins,” J. Phys. Chem. A 112(29), 6522–6526 (2008).
[CrossRef] [PubMed]

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

Enescu, M.

M. Enescu, K. Steenkeste, F. Tfibel, and M.-P. Fontaine-Aupart, “Femtosecond relaxation processes from upper excited states of tetrakis(N-methyl-4-pyridyl)porphyrins studied by transient absorption spectroscopy,” Phys. Chem. Chem. Phys. 4(24), 6092–6099 (2002).
[CrossRef]

Erk, P.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Feldmann, J.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Fletcher, B.

B. Fletcher and J. J. Grabowski, “Photoacoustic calorimetry—an undergraduate physical-organic experiment,” J. Chem. Educ. 77(5), 640–645 (2000).
[CrossRef]

Fontaine-Aupart, M.-P.

M. Enescu, K. Steenkeste, F. Tfibel, and M.-P. Fontaine-Aupart, “Femtosecond relaxation processes from upper excited states of tetrakis(N-methyl-4-pyridyl)porphyrins studied by transient absorption spectroscopy,” Phys. Chem. Chem. Phys. 4(24), 6092–6099 (2002).
[CrossRef]

Formosinho, S. J.

M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, “Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies,” Chemistry 4(11), 2299–2307 (1998).
[CrossRef]

Franzen, P. L.

P. L. Franzen, L. Misoguti, and S. C. Zilio, “Hyper-Rayleigh scattering with picosecond pulse trains,” Appl. Opt. 47(10), 1443–1446 (2008).
[CrossRef] [PubMed]

P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

Fuchs, E.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Gaffo, L.

C. R. Mendonça, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, and S. C. Zilio, “Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution,” Chem. Phys. Lett. 323(3-4), 300–304 (2000).
[CrossRef]

Goncalves, P.

P. Goncalves, L. Boni, N. Neto, J. Rodrigues, S. Zilio, and I. Borissevitch, “Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin,” Chem. Phys. Lett. 407(1-3), 236–241 (2005).
[CrossRef]

Gonçalves, P. J.

P. J. Gonçalves, L. De Boni, I. E. Borissevitch, and S. C. Zílio, “Excited state dynamics of meso-tetra(sulphonatophenyl) metalloporphyrins,” J. Phys. Chem. A 112(29), 6522–6526 (2008).
[CrossRef] [PubMed]

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

Gonsalves, A. M. R.

M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, “Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies,” Chemistry 4(11), 2299–2307 (1998).
[CrossRef]

Grabowski, J. J.

B. Fletcher and J. J. Grabowski, “Photoacoustic calorimetry—an undergraduate physical-organic experiment,” J. Chem. Educ. 77(5), 640–645 (2000).
[CrossRef]

Haneder, S.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Harada, Y.

Y. Harada, T. Suzuki, T. Ichimura, and Y. Z. Xu, “Triplet formation of 4-thiothymidine and its photosensitization to oxygen studied by time-resolved thermal lensing technique,” J. Phys. Chem. B 111(19), 5518–5524 (2007).
[CrossRef] [PubMed]

Hasan, T.

B. W. Pogue, B. Ortel, N. Chen, R. W. Redmond, and T. Hasan, “A photobiological and photophysical-based study of phototoxicity of two chlorins,” Cancer Res. 61(2), 717–724 (2001).
[PubMed]

B. W. Pogue, T. Momma, H. C. Wu, and T. Hasan, “Transient absorption changes in vivo during photodynamic therapy with pulsed-laser light,” Br. J. Cancer 80(3-4), 344–351 (1999).
[CrossRef] [PubMed]

Horrocks, A. R.

A. R. Horrocks, T. Medinger, and F. Wilkinson, “Solvent dependence of quantum yield of triplet state production of 9-phenylanthracene,” Photochem. Photobiol. 6(1), 21–28 (1967).
[CrossRef]

Hug, G. L.

G. Burdzinski, M. Bayda, G. L. Hug, M. Majchrzak, B. Marciniec, and B. Marciniak, “Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state,” J. Lumin. 131(4), 577–580 (2011).
[CrossRef]

Ichimura, T.

Y. Harada, T. Suzuki, T. Ichimura, and Y. Z. Xu, “Triplet formation of 4-thiothymidine and its photosensitization to oxygen studied by time-resolved thermal lensing technique,” J. Phys. Chem. B 111(19), 5518–5524 (2007).
[CrossRef] [PubMed]

T. Suzuki, U. Okuyama, and T. Ichimura, “Double proton transfer reaction of 7-azaindole dimer and complexes studied by time-resolved thermal lensing technique,” J. Phys. Chem. A 101(38), 7047–7052 (1997).
[CrossRef]

Ito, A. S.

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

Johnson, D. G.

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser-dyes - picosecond laser flash-photolysis studies of rhodamine-6g, rhodamine-b and rhodamine-101,” J. Chem. Soc., Faraday Trans. 89(23), 4185–4191 (1993).
[CrossRef]

Lennartz, C.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Lupton, J. M.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Majchrzak, M.

G. Burdzinski, M. Bayda, G. L. Hug, M. Majchrzak, B. Marciniec, and B. Marciniak, “Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state,” J. Lumin. 131(4), 577–580 (2011).
[CrossRef]

Marciniak, B.

G. Burdzinski, M. Bayda, G. L. Hug, M. Majchrzak, B. Marciniec, and B. Marciniak, “Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state,” J. Lumin. 131(4), 577–580 (2011).
[CrossRef]

Marciniec, B.

G. Burdzinski, M. Bayda, G. L. Hug, M. Majchrzak, B. Marciniec, and B. Marciniak, “Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state,” J. Lumin. 131(4), 577–580 (2011).
[CrossRef]

Marquezin, C. A.

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

Medinger, T.

A. R. Horrocks, T. Medinger, and F. Wilkinson, “Solvent dependence of quantum yield of triplet state production of 9-phenylanthracene,” Photochem. Photobiol. 6(1), 21–28 (1967).
[CrossRef]

Mendonca, C. R.

L. Misoguti, C. R. Mendonca, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74(11), 1531–1533 (1999).
[CrossRef]

Mendonça, C. R.

C. R. Mendonça, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, and S. C. Zilio, “Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution,” Chem. Phys. Lett. 323(3-4), 300–304 (2000).
[CrossRef]

Miles, P.

Misoguti, L.

P. L. Franzen, L. Misoguti, and S. C. Zilio, “Hyper-Rayleigh scattering with picosecond pulse trains,” Appl. Opt. 47(10), 1443–1446 (2008).
[CrossRef] [PubMed]

C. R. Mendonça, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, and S. C. Zilio, “Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution,” Chem. Phys. Lett. 323(3-4), 300–304 (2000).
[CrossRef]

L. Misoguti, C. R. Mendonca, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74(11), 1531–1533 (1999).
[CrossRef]

Molt, O.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Momma, T.

B. W. Pogue, T. Momma, H. C. Wu, and T. Hasan, “Transient absorption changes in vivo during photodynamic therapy with pulsed-laser light,” Br. J. Cancer 80(3-4), 344–351 (1999).
[CrossRef] [PubMed]

Moreira, W. C.

C. R. Mendonça, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, and S. C. Zilio, “Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution,” Chem. Phys. Lett. 323(3-4), 300–304 (2000).
[CrossRef]

Munster, I.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Neto, N.

P. Goncalves, L. Boni, N. Neto, J. Rodrigues, S. Zilio, and I. Borissevitch, “Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin,” Chem. Phys. Lett. 407(1-3), 236–241 (2005).
[CrossRef]

Neto, N. M. B.

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

Okuyama, U.

T. Suzuki, U. Okuyama, and T. Ichimura, “Double proton transfer reaction of 7-azaindole dimer and complexes studied by time-resolved thermal lensing technique,” J. Phys. Chem. A 101(38), 7047–7052 (1997).
[CrossRef]

Oliveira, O. N.

C. R. Mendonça, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, and S. C. Zilio, “Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution,” Chem. Phys. Lett. 323(3-4), 300–304 (2000).
[CrossRef]

Orenstein, M.

Ortel, B.

B. W. Pogue, B. Ortel, N. Chen, R. W. Redmond, and T. Hasan, “A photobiological and photophysical-based study of phototoxicity of two chlorins,” Cancer Res. 61(2), 717–724 (2001).
[PubMed]

Parsons, B. J.

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser-dyes - picosecond laser flash-photolysis studies of rhodamine-6g, rhodamine-b and rhodamine-101,” J. Chem. Soc., Faraday Trans. 89(23), 4185–4191 (1993).
[CrossRef]

Pavlopoulos, T. G.

Penzkofer, A.

S. Reindl and A. Penzkofer, “Triplet quantum yield determination by picosecond laser double-pulse fluorescence excitation,” Chem. Phys. 213(1-3), 429–438 (1996).
[CrossRef]

S. Reindl and A. Penzkofer, “Higher excited-state triplet-singlet intersystem crossing of some organic dyes,” Chem. Phys. 211(1-3), 431–439 (1996).
[CrossRef]

Pereira, M. M.

M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, “Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies,” Chemistry 4(11), 2299–2307 (1998).
[CrossRef]

Pineiro, M.

M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, “Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies,” Chemistry 4(11), 2299–2307 (1998).
[CrossRef]

Pogue, B. W.

B. W. Pogue, B. Ortel, N. Chen, R. W. Redmond, and T. Hasan, “A photobiological and photophysical-based study of phototoxicity of two chlorins,” Cancer Res. 61(2), 717–724 (2001).
[PubMed]

B. W. Pogue, T. Momma, H. C. Wu, and T. Hasan, “Transient absorption changes in vivo during photodynamic therapy with pulsed-laser light,” Br. J. Cancer 80(3-4), 344–351 (1999).
[CrossRef] [PubMed]

Rao, D. N.

Rao, S. V.

Redmond, R. W.

B. W. Pogue, B. Ortel, N. Chen, R. W. Redmond, and T. Hasan, “A photobiological and photophysical-based study of phototoxicity of two chlorins,” Cancer Res. 61(2), 717–724 (2001).
[PubMed]

Reindl, S.

S. Reindl and A. Penzkofer, “Triplet quantum yield determination by picosecond laser double-pulse fluorescence excitation,” Chem. Phys. 213(1-3), 429–438 (1996).
[CrossRef]

S. Reindl and A. Penzkofer, “Higher excited-state triplet-singlet intersystem crossing of some organic dyes,” Chem. Phys. 211(1-3), 431–439 (1996).
[CrossRef]

Rodrigues, J.

P. Goncalves, L. Boni, N. Neto, J. Rodrigues, S. Zilio, and I. Borissevitch, “Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin,” Chem. Phys. Lett. 407(1-3), 236–241 (2005).
[CrossRef]

Rodrigues, J. J.

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

Schildknecht, C.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Speiser, S.

Srinivas, N. K. M. N.

Steenkeste, K.

M. Enescu, K. Steenkeste, F. Tfibel, and M.-P. Fontaine-Aupart, “Femtosecond relaxation processes from upper excited states of tetrakis(N-methyl-4-pyridyl)porphyrins studied by transient absorption spectroscopy,” Phys. Chem. Chem. Phys. 4(24), 6092–6099 (2002).
[CrossRef]

Suzuki, T.

Y. Harada, T. Suzuki, T. Ichimura, and Y. Z. Xu, “Triplet formation of 4-thiothymidine and its photosensitization to oxygen studied by time-resolved thermal lensing technique,” J. Phys. Chem. B 111(19), 5518–5524 (2007).
[CrossRef] [PubMed]

T. Suzuki, U. Okuyama, and T. Ichimura, “Double proton transfer reaction of 7-azaindole dimer and complexes studied by time-resolved thermal lensing technique,” J. Phys. Chem. A 101(38), 7047–7052 (1997).
[CrossRef]

Takara, M.

P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

Tfibel, F.

M. Enescu, K. Steenkeste, F. Tfibel, and M.-P. Fontaine-Aupart, “Femtosecond relaxation processes from upper excited states of tetrakis(N-methyl-4-pyridyl)porphyrins studied by transient absorption spectroscopy,” Phys. Chem. Chem. Phys. 4(24), 6092–6099 (2002).
[CrossRef]

Thompson, M. E.

M. E. Thompson, “The evolution of organometallic complexes in organic light-emitting devices,” Mater. Res. Bull. 32(09), 694–701 (2007).
[CrossRef]

Wagenblast, G.

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Wilkinson, F.

A. R. Horrocks, T. Medinger, and F. Wilkinson, “Solvent dependence of quantum yield of triplet state production of 9-phenylanthracene,” Photochem. Photobiol. 6(1), 21–28 (1967).
[CrossRef]

Windsor, M.

Wu, H. C.

B. W. Pogue, T. Momma, H. C. Wu, and T. Hasan, “Transient absorption changes in vivo during photodynamic therapy with pulsed-laser light,” Br. J. Cancer 80(3-4), 344–351 (1999).
[CrossRef] [PubMed]

Xu, Y. Z.

Y. Harada, T. Suzuki, T. Ichimura, and Y. Z. Xu, “Triplet formation of 4-thiothymidine and its photosensitization to oxygen studied by time-resolved thermal lensing technique,” J. Phys. Chem. B 111(19), 5518–5524 (2007).
[CrossRef] [PubMed]

Zilio, S.

P. Goncalves, L. Boni, N. Neto, J. Rodrigues, S. Zilio, and I. Borissevitch, “Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin,” Chem. Phys. Lett. 407(1-3), 236–241 (2005).
[CrossRef]

Zilio, S. C.

P. L. Franzen, L. Misoguti, and S. C. Zilio, “Hyper-Rayleigh scattering with picosecond pulse trains,” Appl. Opt. 47(10), 1443–1446 (2008).
[CrossRef] [PubMed]

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

C. R. Mendonça, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, and S. C. Zilio, “Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution,” Chem. Phys. Lett. 323(3-4), 300–304 (2000).
[CrossRef]

L. Misoguti, C. R. Mendonca, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74(11), 1531–1533 (1999).
[CrossRef]

Zílio, S. C.

P. J. Gonçalves, L. De Boni, I. E. Borissevitch, and S. C. Zílio, “Excited state dynamics of meso-tetra(sulphonatophenyl) metalloporphyrins,” J. Phys. Chem. A 112(29), 6522–6526 (2008).
[CrossRef] [PubMed]

P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

Adv. Mater. (Deerfield Beach Fla.) (1)

S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

L. Misoguti, C. R. Mendonca, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74(11), 1531–1533 (1999).
[CrossRef]

Br. J. Cancer (1)

B. W. Pogue, T. Momma, H. C. Wu, and T. Hasan, “Transient absorption changes in vivo during photodynamic therapy with pulsed-laser light,” Br. J. Cancer 80(3-4), 344–351 (1999).
[CrossRef] [PubMed]

Cancer Res. (1)

B. W. Pogue, B. Ortel, N. Chen, R. W. Redmond, and T. Hasan, “A photobiological and photophysical-based study of phototoxicity of two chlorins,” Cancer Res. 61(2), 717–724 (2001).
[PubMed]

Chem. Phys. (2)

S. Reindl and A. Penzkofer, “Triplet quantum yield determination by picosecond laser double-pulse fluorescence excitation,” Chem. Phys. 213(1-3), 429–438 (1996).
[CrossRef]

S. Reindl and A. Penzkofer, “Higher excited-state triplet-singlet intersystem crossing of some organic dyes,” Chem. Phys. 211(1-3), 431–439 (1996).
[CrossRef]

Chem. Phys. Lett. (2)

C. R. Mendonça, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, and S. C. Zilio, “Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution,” Chem. Phys. Lett. 323(3-4), 300–304 (2000).
[CrossRef]

P. Goncalves, L. Boni, N. Neto, J. Rodrigues, S. Zilio, and I. Borissevitch, “Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin,” Chem. Phys. Lett. 407(1-3), 236–241 (2005).
[CrossRef]

Chemistry (1)

M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, “Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies,” Chemistry 4(11), 2299–2307 (1998).
[CrossRef]

J. Chem. Educ. (1)

B. Fletcher and J. J. Grabowski, “Photoacoustic calorimetry—an undergraduate physical-organic experiment,” J. Chem. Educ. 77(5), 640–645 (2000).
[CrossRef]

J. Chem. Soc., Faraday Trans. (1)

P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser-dyes - picosecond laser flash-photolysis studies of rhodamine-6g, rhodamine-b and rhodamine-101,” J. Chem. Soc., Faraday Trans. 89(23), 4185–4191 (1993).
[CrossRef]

J. Lumin. (1)

G. Burdzinski, M. Bayda, G. L. Hug, M. Majchrzak, B. Marciniec, and B. Marciniak, “Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state,” J. Lumin. 131(4), 577–580 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol., A (1)

P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006).
[CrossRef]

J. Phys. Chem. A (2)

P. J. Gonçalves, L. De Boni, I. E. Borissevitch, and S. C. Zílio, “Excited state dynamics of meso-tetra(sulphonatophenyl) metalloporphyrins,” J. Phys. Chem. A 112(29), 6522–6526 (2008).
[CrossRef] [PubMed]

T. Suzuki, U. Okuyama, and T. Ichimura, “Double proton transfer reaction of 7-azaindole dimer and complexes studied by time-resolved thermal lensing technique,” J. Phys. Chem. A 101(38), 7047–7052 (1997).
[CrossRef]

J. Phys. Chem. B (1)

Y. Harada, T. Suzuki, T. Ichimura, and Y. Z. Xu, “Triplet formation of 4-thiothymidine and its photosensitization to oxygen studied by time-resolved thermal lensing technique,” J. Phys. Chem. B 111(19), 5518–5524 (2007).
[CrossRef] [PubMed]

Mater. Res. Bull. (1)

M. E. Thompson, “The evolution of organometallic complexes in organic light-emitting devices,” Mater. Res. Bull. 32(09), 694–701 (2007).
[CrossRef]

Photochem. Photobiol. (1)

A. R. Horrocks, T. Medinger, and F. Wilkinson, “Solvent dependence of quantum yield of triplet state production of 9-phenylanthracene,” Photochem. Photobiol. 6(1), 21–28 (1967).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

M. Enescu, K. Steenkeste, F. Tfibel, and M.-P. Fontaine-Aupart, “Femtosecond relaxation processes from upper excited states of tetrakis(N-methyl-4-pyridyl)porphyrins studied by transient absorption spectroscopy,” Phys. Chem. Chem. Phys. 4(24), 6092–6099 (2002).
[CrossRef]

Spectrochim. Acta [A] (1)

P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

Other (1)

J. H. Chou, M. E. Kosal, H. S. Nalwa, N. A. Rakow, and K. S. Suslick, “Applications of porphyrins and metalloporphyrins to materials chemistry,” in The Porphyrin Handbook, K. Kadish, K. Smith, and R. Guillard, eds. (Academic Press, 2000), Chap. 41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Diagram of the experimental setup. L: lens; D1 and D2: detectors; S: sample; OF: optical fiber. (b) Typical waveform obtained for fluorescence signal (red) and reference signal (black). The inset shows the three-energy-level diagram used to simulate the experimental results is shown.

Fig. 2
Fig. 2

(a), (b) and (c) depict the fluorescence signal envelope distortion for three different cases, in which the fluorescence time (τ f) is kept constant as (a) 3 ns, (b) 13 ns and (c) 30 (ns). For these cases, the intersystem crossing time (τ isc) is changed for each individual τ f in the following order: 3 ns (□), 10 ns (○), 30 ns (△), 100 ns (▽), 300 ns (◁) and 1000 ns (▷). The open stars represent the pulse irradiance envelope shape just as reference for the reader. (d), (e) and (f) show the normalized fluorescence signal for the same cases as mentioned before. The simulations are only allowed when the τ iscτ f.

Fig. 3
Fig. 3

(a) Reference (open circles) and fluorescence (closed squares) signals measured at a power of 8 mW in rhodamine B solution. (b) NF signal for different laser power. The solid lines are the discreet simulations obtained with the three-energy-level diagram, using the known RB spectroscopic parameters.

Fig. 5
Fig. 5

Normalized fluorescence (open circles) for 4 different porphyrins measured at different laser power and at 3 cm sample position with respect to the focal plane. The solid lines are the discreet simulation obtained with the three-energy-level diagram and the values shown in Table 1.

Fig. 4
Fig. 4

Normalized fluorescence decays of different porphyrins studied in this work. The solid lines represent a simple exponential fitting. The dotted line corresponds to the reference waveform.

Tables (1)

Tables Icon

Table 1 Spectroscopic Parameters Used and Calculated for the Porphyrins

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d n 0 ( t ) d t = n 0 ( t ) W 01 + n 1 ( t ) τ = n 0 ( t ) W 01 + n 1 ( t ) τ f n 1 ( t ) τ i s c ,
d n 1 ( t ) d t = + n 0 ( t ) W 01 n 1 ( t ) τ f ,
d n T ( t ) d t = n 1 ( t ) τ f ,
( n 1 ) j = ( 1 e σ 01 F j h ν ) ( n 0 ) j 1 + { ( 1 e σ 01 F j h ν ) ( 1 τ f τ i s c ) [ ( 1 e T τ f ) + e T τ f ] } ( n 1 ) j 1 ,
( n 0 ) j = e σ 01 F j h ν ( n 0 ) j 1 + [ e σ 01 F j h ν ( 1 τ f τ i s c ) ( 1 e T τ f ) ] ( n 1 ) j 1 ,

Metrics