Abstract

This paper presents an optical pressure sensor based on a Fabry-Perot (FP) interferometer formed by a 45° angle polished single mode fiber and an external silicon nitride diaphragm. The sensor is comprised of two V-shape grooves with different widths on a silicon chip, a silicon nitride diaphragm released on the surface of the wider V-groove, and a 45° angle polished single mode fiber. The sensor is especially suitable for blast wave measurements: its compact structure ensures a high spatial resolution; its thin diaphragm based design and the optical demodulation scheme allow a fast response to the rapid changing signals experienced during blast events. The sensor shows linearity with the correlation coefficient of 0.9999 as well as a hysteresis of less than 0.3%. The shock tube test demonstrated that the sensor has a rise time of less than 2 µs from 0 kPa to 140 kPa.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Okie, “Traumatic brain injury in the war zone,” N. Engl. J. Med. 352(20), 2043–2047 (2005).
    [CrossRef] [PubMed]
  2. R. G. DePalma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352(13), 1335–1342 (2005).
    [CrossRef] [PubMed]
  3. R. J. Irwin, M. R. Lerner, J. F. Bealer, P. C. Mantor, D. J. Brackett, and D. W. Tuggle, “Shock after blast wave injury is caused by a vagally mediated reflex,” J. Trauma 47(1), 105–110 (1999).
    [CrossRef] [PubMed]
  4. K. H. Taber, D. L. Warden, and R. A. Hurley, “Blast-related traumatic brain injury: what is known?” J. Neuropsychiatry Clin. Neurosci. 18(2), 141–145 (2006).
    [CrossRef] [PubMed]
  5. S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
    [CrossRef]
  6. O. Tohyama, M. Kohashi, M. Fukui, and H. Itoh, “A fiber-optic pressure microsensor for biomedical applications,” in Solid State Sensors and Actuators,1997. TRANSDUCERS '97 Chicago., 1997 International Conference on, 1997), 1489–1492 vol.1482.
  7. X. Juncheng, G. Pickrell, W. Xingwei, P. Wei, K. Cooper, and W. Anbo, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” Photon. Technol. Lett. 17(4), 870–872 (2005).
    [CrossRef]
  8. W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry–Perot cavity length control using angle polished fiber,” Opt. Express 17(19), 16613–16618 (2009).
    [CrossRef] [PubMed]
  9. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
    [CrossRef] [PubMed]
  10. W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
    [CrossRef]
  11. W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17(7), 1334–1342 (2007).
    [CrossRef]
  12. M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
    [CrossRef]

2010 (1)

2009 (1)

2007 (2)

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17(7), 1334–1342 (2007).
[CrossRef]

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[CrossRef]

2006 (2)

K. H. Taber, D. L. Warden, and R. A. Hurley, “Blast-related traumatic brain injury: what is known?” J. Neuropsychiatry Clin. Neurosci. 18(2), 141–145 (2006).
[CrossRef] [PubMed]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

2005 (3)

X. Juncheng, G. Pickrell, W. Xingwei, P. Wei, K. Cooper, and W. Anbo, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” Photon. Technol. Lett. 17(4), 870–872 (2005).
[CrossRef]

S. Okie, “Traumatic brain injury in the war zone,” N. Engl. J. Med. 352(20), 2043–2047 (2005).
[CrossRef] [PubMed]

R. G. DePalma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352(13), 1335–1342 (2005).
[CrossRef] [PubMed]

2000 (1)

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[CrossRef]

1999 (1)

R. J. Irwin, M. R. Lerner, J. F. Bealer, P. C. Mantor, D. J. Brackett, and D. W. Tuggle, “Shock after blast wave injury is caused by a vagally mediated reflex,” J. Trauma 47(1), 105–110 (1999).
[CrossRef] [PubMed]

Allen, R. M.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[CrossRef]

Anbo, W.

X. Juncheng, G. Pickrell, W. Xingwei, P. Wei, K. Cooper, and W. Anbo, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” Photon. Technol. Lett. 17(4), 870–872 (2005).
[CrossRef]

Barton, J. S.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17(7), 1334–1342 (2007).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[CrossRef]

Bealer, J. F.

R. J. Irwin, M. R. Lerner, J. F. Bealer, P. C. Mantor, D. J. Brackett, and D. W. Tuggle, “Shock after blast wave injury is caused by a vagally mediated reflex,” J. Trauma 47(1), 105–110 (1999).
[CrossRef] [PubMed]

Brackett, D. J.

R. J. Irwin, M. R. Lerner, J. F. Bealer, P. C. Mantor, D. J. Brackett, and D. W. Tuggle, “Shock after blast wave injury is caused by a vagally mediated reflex,” J. Trauma 47(1), 105–110 (1999).
[CrossRef] [PubMed]

Burris, D. G.

R. G. DePalma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352(13), 1335–1342 (2005).
[CrossRef] [PubMed]

Champion, H. R.

R. G. DePalma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352(13), 1335–1342 (2005).
[CrossRef] [PubMed]

Chavko, M.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[CrossRef]

Chen, J.

Cooper, K.

X. Juncheng, G. Pickrell, W. Xingwei, P. Wei, K. Cooper, and W. Anbo, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” Photon. Technol. Lett. 17(4), 870–872 (2005).
[CrossRef]

DePalma, R. G.

R. G. DePalma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352(13), 1335–1342 (2005).
[CrossRef] [PubMed]

Djakov, V.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17(7), 1334–1342 (2007).
[CrossRef]

Dunare, C.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

Dunare, C. C.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17(7), 1334–1342 (2007).
[CrossRef]

Gander, M. J.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[CrossRef]

Hindle, A.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

Hodgson, M. J.

R. G. DePalma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352(13), 1335–1342 (2005).
[CrossRef] [PubMed]

Hurley, R. A.

K. H. Taber, D. L. Warden, and R. A. Hurley, “Blast-related traumatic brain injury: what is known?” J. Neuropsychiatry Clin. Neurosci. 18(2), 141–145 (2006).
[CrossRef] [PubMed]

Irwin, R. J.

R. J. Irwin, M. R. Lerner, J. F. Bealer, P. C. Mantor, D. J. Brackett, and D. W. Tuggle, “Shock after blast wave injury is caused by a vagally mediated reflex,” J. Trauma 47(1), 105–110 (1999).
[CrossRef] [PubMed]

Jones, J. D. C.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[CrossRef]

Juncheng, X.

X. Juncheng, G. Pickrell, W. Xingwei, P. Wei, K. Cooper, and W. Anbo, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” Photon. Technol. Lett. 17(4), 870–872 (2005).
[CrossRef]

Koller, W. A.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[CrossRef]

Lerner, M. R.

R. J. Irwin, M. R. Lerner, J. F. Bealer, P. C. Mantor, D. J. Brackett, and D. W. Tuggle, “Shock after blast wave injury is caused by a vagally mediated reflex,” J. Trauma 47(1), 105–110 (1999).
[CrossRef] [PubMed]

MacPherson, W. N.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17(7), 1334–1342 (2007).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[CrossRef]

Mantor, P. C.

R. J. Irwin, M. R. Lerner, J. F. Bealer, P. C. Mantor, D. J. Brackett, and D. W. Tuggle, “Shock after blast wave injury is caused by a vagally mediated reflex,” J. Trauma 47(1), 105–110 (1999).
[CrossRef] [PubMed]

McCarron, R. M.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[CrossRef]

Niezrecki, C.

Okie, S.

S. Okie, “Traumatic brain injury in the war zone,” N. Engl. J. Med. 352(20), 2043–2047 (2005).
[CrossRef] [PubMed]

Owen, C. L.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[CrossRef]

Parkes, W.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17(7), 1334–1342 (2007).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

Pichugin, A. V.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

Pickrell, G.

X. Juncheng, G. Pickrell, W. Xingwei, P. Wei, K. Cooper, and W. Anbo, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” Photon. Technol. Lett. 17(4), 870–872 (2005).
[CrossRef]

Prusaczyk, W. K.

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[CrossRef]

Stevenson, J. T. M.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17(7), 1334–1342 (2007).
[CrossRef]

Stevenson, T.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

Taber, K. H.

K. H. Taber, D. L. Warden, and R. A. Hurley, “Blast-related traumatic brain injury: what is known?” J. Neuropsychiatry Clin. Neurosci. 18(2), 141–145 (2006).
[CrossRef] [PubMed]

Tian, Y.

Tuggle, D. W.

R. J. Irwin, M. R. Lerner, J. F. Bealer, P. C. Mantor, D. J. Brackett, and D. W. Tuggle, “Shock after blast wave injury is caused by a vagally mediated reflex,” J. Trauma 47(1), 105–110 (1999).
[CrossRef] [PubMed]

Tyas, A.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

Wang, W.

Wang, X.

Warden, D. L.

K. H. Taber, D. L. Warden, and R. A. Hurley, “Blast-related traumatic brain injury: what is known?” J. Neuropsychiatry Clin. Neurosci. 18(2), 141–145 (2006).
[CrossRef] [PubMed]

Watson, A. J.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[CrossRef]

Watson, S.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17(7), 1334–1342 (2007).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

Wei, P.

X. Juncheng, G. Pickrell, W. Xingwei, P. Wei, K. Cooper, and W. Anbo, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” Photon. Technol. Lett. 17(4), 870–872 (2005).
[CrossRef]

Wu, N.

Xingwei, W.

X. Juncheng, G. Pickrell, W. Xingwei, P. Wei, K. Cooper, and W. Anbo, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” Photon. Technol. Lett. 17(4), 870–872 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17(7), 1334–1342 (2007).
[CrossRef]

J. Neuropsychiatry Clin. Neurosci. (1)

K. H. Taber, D. L. Warden, and R. A. Hurley, “Blast-related traumatic brain injury: what is known?” J. Neuropsychiatry Clin. Neurosci. 18(2), 141–145 (2006).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

M. Chavko, W. A. Koller, W. K. Prusaczyk, and R. M. McCarron, “Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain,” J. Neurosci. Methods 159(2), 277–281 (2007).
[CrossRef]

J. Trauma (1)

R. J. Irwin, M. R. Lerner, J. F. Bealer, P. C. Mantor, D. J. Brackett, and D. W. Tuggle, “Shock after blast wave injury is caused by a vagally mediated reflex,” J. Trauma 47(1), 105–110 (1999).
[CrossRef] [PubMed]

Meas. Sci. Technol. (2)

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17(6), 1337–1342 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11(2), 95–102 (2000).
[CrossRef]

N. Engl. J. Med. (2)

S. Okie, “Traumatic brain injury in the war zone,” N. Engl. J. Med. 352(20), 2043–2047 (2005).
[CrossRef] [PubMed]

R. G. DePalma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352(13), 1335–1342 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Photon. Technol. Lett. (1)

X. Juncheng, G. Pickrell, W. Xingwei, P. Wei, K. Cooper, and W. Anbo, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” Photon. Technol. Lett. 17(4), 870–872 (2005).
[CrossRef]

Other (1)

O. Tohyama, M. Kohashi, M. Fukui, and H. Itoh, “A fiber-optic pressure microsensor for biomedical applications,” in Solid State Sensors and Actuators,1997. TRANSDUCERS '97 Chicago., 1997 International Conference on, 1997), 1489–1492 vol.1482.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the sensor’s design. (a) The sensor comprises two different V-grooves, a silicon nitride diaphragm and an angle polished fiber; (b) Horizontal section view of the hole fabricated by back etching away the silicon substrate; (c) The FP interferometer is formed by the side wall of the angle polished fiber and the silicon nitride diaphragm was released by the back etching.

Fig. 2
Fig. 2

The schematic diagram of the sensor fabrication procedure. (a) Two V-grooves with different widths were fabricated by anisotropic wet etching on a (100) silicon substrate; (b) A thin film of the silicon nitride was deposited on the surface; (c) A silicon nitride diaphragm was released on the side wall of the large V-groove by etching away the silicon from the backside of the silicon substrate; (d) A 45° angle polished single mode fiber was placed and fixed in the small V-groove; (e) The angle polished fiber and the back holes were sealed with epoxy.

Fig. 3
Fig. 3

Schematic diagram of the static experiment setup.

Fig. 4
Fig. 4

Schematic diagram of the shock tube experiment.

Fig. 5
Fig. 5

(a) A photograph of a typical optical pressure sensor substrate which was ready for packaging; (b) Magnified photograph of V-groove with diaphragms of six different diameters; (c) Magnified photograph of diaphragms with transmit light source; (d) A packaged optical pressure sensor with an angle polished fiber in the V-groove. The diameter of the diaphragm was chosen at 80 µm.

Fig. 6
Fig. 6

The reflection interference waveform observed on the CTS. The free spectral range (FSR) was measured as 26.5 nm.

Fig. 7
Fig. 7

The experiment results of shock tube test. (a) The first cycle of the blast event; (b) Zoomed-in picture emphasizing on the rise portion of the signal.

Fig. 8
Fig. 8

The initial portion of the signal in Fig. 7(a). The oscillations from the optical pressure sensor were larger than that from the reference pressure sensor due to the cantilever structure.

Metrics