Abstract

In this work, a first report on fabricating an asymmetric Bragg coupler-based filter on polymeric waveguides without input-waveguide grating was revealed. The fabrication process we developed was using holographic interference techniques, capillary effect, soft lithography, and micro molding process. The transmission dip of about −9.2 dB and the 3 dB transmission bandwidth of about 0.125 nm were obtained from a filter.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mechin, P. Grosso, and D. Bose, “Add-drop multiplexer with UV-written Bragg gratings and directional coupler in SiO2-Si integrated waveguides,” J. Lightwave Technol. 19(9), 1282–1286 (2001).
    [CrossRef]
  2. J. M. Simmons, “On determining the optimal optical reach for a long-haul network,” J. Lightwave Technol. 23(3), 1039–1048 (2005).
    [CrossRef]
  3. P. G. Arbués, G. M. Machuca, and A. Tzanakaki, “Comparative study of existing OADM and OXC architectures and technologies from the failure behavior perspective,” J. Opt. Netw. 6(2), 123–133 (2007).
    [CrossRef]
  4. T. Barwicz, M. A. Popović, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004).
    [CrossRef] [PubMed]
  5. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007).
    [CrossRef] [PubMed]
  6. L. Eldada, C. Shing Yin, C. Poga, R. Glass, Blomquist, and R. A. Nonvood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
    [CrossRef]
  7. S. Ahn and S. Shin, “Post-fabrication tuning of a polymeric grating-assisted co-directional coupler filter by photobleaching,” Opt. Commun. 194(4-6), 309–312 (2001).
    [CrossRef]
  8. T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1-6), 249–264 (1998).
    [CrossRef]
  9. M. Oh, H. Lee, M. Lee, J. Ahn, S. G. Han, and H. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
    [CrossRef]
  10. L. Zhu, Y. Huang, W. M. J. Green, and A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12(25), 6372–6376 (2004).
    [CrossRef] [PubMed]
  11. W. C. Chuang, C. K. Chao, and C. T. Ho, “Fabrication of high-resolution periodical structure on polymer waveguides using a replication process,” Opt. Express 15(14), 8649–8659 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-14-8649 .
    [CrossRef] [PubMed]
  12. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [CrossRef] [PubMed]
  13. W. C. Chuang, A. C. Lee, C. K. Chao, and C. T. Ho, “Fabrication of optical filters based on polymer asymmetric Bragg couplers,” Opt. Express 17(20), 18003–18013 (2009).
    [CrossRef] [PubMed]
  14. J. Scheuer and A. Yariv, “Fabrication and characterization of low-loss polymeric waveguides and micro-ring,” J. Eur. Opt. Soc. Rapid Publ. 1, 06007 (2006).
    [CrossRef]
  15. D.-Y. Choi, S. Madden, A. Rode, R. Wang, B. Luther-Davies, N. J. Baker, and B. J. Eggleton, “Integrated shadow mask for sampled Bragg gratings in chalcogenide (As(2)S(3)) planar waveguides,” Opt. Express 15(12), 7708–7712 (2007).
    [CrossRef] [PubMed]
  16. J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
    [CrossRef]
  17. R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
    [CrossRef]
  18. T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007).
    [CrossRef] [PubMed]
  19. J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
    [CrossRef]
  20. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999).
    [CrossRef]
  21. J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
    [CrossRef]
  22. Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49(6), 1231–1239 (2000).
    [CrossRef]
  23. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).

2009 (1)

2008 (1)

2007 (5)

2006 (1)

J. Scheuer and A. Yariv, “Fabrication and characterization of low-loss polymeric waveguides and micro-ring,” J. Eur. Opt. Soc. Rapid Publ. 1, 06007 (2006).
[CrossRef]

2005 (4)

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

J. M. Simmons, “On determining the optimal optical reach for a long-haul network,” J. Lightwave Technol. 23(3), 1039–1048 (2005).
[CrossRef]

2004 (2)

2003 (1)

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[CrossRef]

2001 (2)

S. Ahn and S. Shin, “Post-fabrication tuning of a polymeric grating-assisted co-directional coupler filter by photobleaching,” Opt. Commun. 194(4-6), 309–312 (2001).
[CrossRef]

D. Mechin, P. Grosso, and D. Bose, “Add-drop multiplexer with UV-written Bragg gratings and directional coupler in SiO2-Si integrated waveguides,” J. Lightwave Technol. 19(9), 1282–1286 (2001).
[CrossRef]

2000 (1)

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49(6), 1231–1239 (2000).
[CrossRef]

1999 (1)

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999).
[CrossRef]

1998 (3)

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1-6), 249–264 (1998).
[CrossRef]

M. Oh, H. Lee, M. Lee, J. Ahn, S. G. Han, and H. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

L. Eldada, C. Shing Yin, C. Poga, R. Glass, Blomquist, and R. A. Nonvood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[CrossRef]

Ahn, J.

M. Oh, H. Lee, M. Lee, J. Ahn, S. G. Han, and H. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Ahn, S.

S. Ahn and S. Shin, “Post-fabrication tuning of a polymeric grating-assisted co-directional coupler filter by photobleaching,” Opt. Commun. 194(4-6), 309–312 (2001).
[CrossRef]

Arbués, P. G.

Baker, N. J.

Barwicz, T.

Beausoleil, R. G.

Berini, P.

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49(6), 1231–1239 (2000).
[CrossRef]

Blomquist,

L. Eldada, C. Shing Yin, C. Poga, R. Glass, Blomquist, and R. A. Nonvood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[CrossRef]

Blomquist, R.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999).
[CrossRef]

Bose, D.

Boudoughian, G.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999).
[CrossRef]

Chao, C. K.

Chen, L.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Cho, S. H.

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Choi, D.-Y.

Chuang, W. C.

Deng, X.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Eggleton, B. J.

Eldada, L.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999).
[CrossRef]

L. Eldada, C. Shing Yin, C. Poga, R. Glass, Blomquist, and R. A. Nonvood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[CrossRef]

Erdogan, T.

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1-6), 249–264 (1998).
[CrossRef]

Fattal, D.

Glass, R.

L. Eldada, C. Shing Yin, C. Poga, R. Glass, Blomquist, and R. A. Nonvood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[CrossRef]

Gordon, J. D.

Green, W. M. J.

Grosso, P.

Grover, C. P.

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49(6), 1231–1239 (2000).
[CrossRef]

Han, S. G.

M. Oh, H. Lee, M. Lee, J. Ahn, S. G. Han, and H. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Haus, H. A.

Ho, C. T.

Horvath, R.

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

Huang, Y.

Ippen, E. P.

Jeong, G.

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Kang, J.-W.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[CrossRef]

Khan, M. H.

Kim, B. W.

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Kim, C. Y.

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Kim, D. Y.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[CrossRef]

Kim, H.

M. Oh, H. Lee, M. Lee, J. Ahn, S. G. Han, and H. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Kim, J.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[CrossRef]

Kim, J.-P.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[CrossRef]

Kim, M.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[CrossRef]

Kwan, S.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Larsen, N. B.

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

Lee, A. C.

Lee, H.

M. Oh, H. Lee, M. Lee, J. Ahn, S. G. Han, and H. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Lee, J. H.

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Lee, J.-S.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[CrossRef]

Lee, M.

M. Oh, H. Lee, M. Lee, J. Ahn, S. G. Han, and H. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Lee, W.

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Liu, F.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Lowder, T. L.

Luther-Davies, B.

Machuca, G. M.

Madden, S.

Maxfield, M.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999).
[CrossRef]

Mechin, D.

Nonvood, R. A.

L. Eldada, C. Shing Yin, C. Poga, R. Glass, Blomquist, and R. A. Nonvood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[CrossRef]

Norwood, R. A.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999).
[CrossRef]

Oh, M.

M. Oh, H. Lee, M. Lee, J. Ahn, S. G. Han, and H. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

Pant, D.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999).
[CrossRef]

Park, M. Y.

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Pedersen, H. C.

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

Poga, C.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999).
[CrossRef]

L. Eldada, C. Shing Yin, C. Poga, R. Glass, Blomquist, and R. A. Nonvood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[CrossRef]

Popovic, M. A.

Qi, M.

Rakich, P. T.

Rode, A.

Scheuer, J.

J. Scheuer and A. Yariv, “Fabrication and characterization of low-loss polymeric waveguides and micro-ring,” J. Eur. Opt. Soc. Rapid Publ. 1, 06007 (2006).
[CrossRef]

Schultz, S. M.

Selfridge, R. H.

Shen, H.

Shin, S.

S. Ahn and S. Shin, “Post-fabrication tuning of a polymeric grating-assisted co-directional coupler filter by photobleaching,” Opt. Commun. 194(4-6), 309–312 (2001).
[CrossRef]

Shing Yin, C.

L. Eldada, C. Shing Yin, C. Poga, R. Glass, Blomquist, and R. A. Nonvood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[CrossRef]

Simmons, J. M.

Simova, E.

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49(6), 1231–1239 (2000).
[CrossRef]

Skivesen, N.

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

Smith, H. I.

Svanberg, C.

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

Tzanakaki, A.

Wang, J. J.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Wang, R.

Watts, M. R.

Xiao, S.

Xu, Q.

Yariv, A.

J. Scheuer and A. Yariv, “Fabrication and characterization of low-loss polymeric waveguides and micro-ring,” J. Eur. Opt. Soc. Rapid Publ. 1, 06007 (2006).
[CrossRef]

L. Zhu, Y. Huang, W. M. J. Green, and A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12(25), 6372–6376 (2004).
[CrossRef] [PubMed]

Yoo, S.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[CrossRef]

Zhu, L.

Zhu, Y.

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49(6), 1231–1239 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

M. Oh, H. Lee, M. Lee, J. Ahn, S. G. Han, and H. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998).
[CrossRef]

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. Eldada, C. Shing Yin, C. Poga, R. Glass, Blomquist, and R. A. Nonvood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998).
[CrossRef]

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49(6), 1231–1239 (2000).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ. (1)

J. Scheuer and A. Yariv, “Fabrication and characterization of low-loss polymeric waveguides and micro-ring,” J. Eur. Opt. Soc. Rapid Publ. 1, 06007 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005).
[CrossRef]

J. Opt. Netw. (1)

J. Vac. Sci. Technol. B (1)

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Opt. Commun. (2)

S. Ahn and S. Shin, “Post-fabrication tuning of a polymeric grating-assisted co-directional coupler filter by photobleaching,” Opt. Commun. 194(4-6), 309–312 (2001).
[CrossRef]

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1-6), 249–264 (1998).
[CrossRef]

Opt. Express (7)

T. Barwicz, M. A. Popović, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004).
[CrossRef] [PubMed]

L. Zhu, Y. Huang, W. M. J. Green, and A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12(25), 6372–6376 (2004).
[CrossRef] [PubMed]

D.-Y. Choi, S. Madden, A. Rode, R. Wang, B. Luther-Davies, N. J. Baker, and B. J. Eggleton, “Integrated shadow mask for sampled Bragg gratings in chalcogenide (As(2)S(3)) planar waveguides,” Opt. Express 15(12), 7708–7712 (2007).
[CrossRef] [PubMed]

W. C. Chuang, C. K. Chao, and C. T. Ho, “Fabrication of high-resolution periodical structure on polymer waveguides using a replication process,” Opt. Express 15(14), 8649–8659 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-14-8649 .
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007).
[CrossRef] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

W. C. Chuang, A. C. Lee, C. K. Chao, and C. T. Ho, “Fabrication of optical filters based on polymer asymmetric Bragg couplers,” Opt. Express 17(20), 18003–18013 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (1)

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of an asymmetric Bragg coupler (ABC)-based polymeric filter without input-waveguide grating.

Fig. 2
Fig. 2

Fabrication process of buried grating in polymeric waveguide filter structure:(a) A negative photoresist and UV polymer are deposited on the glass (b) The photoresist is exposed to the UV light through a photo mask (c) The asymmetric waveguide coupler mold (d) H-PDMS is injected into a waveguide of the photoresist mold (e) The positive photoresist is deposited on the mold (f) The grating is holographically exposed on the positive photoresist of the mold (g) The grating is patterned on an alternative waveguide of the mold (h) The PDMS is spun on the mold (i) The PDMS adhered with H-PDMS is removed to form a master mold (j) The master mold (k) The H-PDMS is injected into the grating-engraved waveguide (l) The PDMS is spun on the master mold to form a stamp (m) The PDMS adhered with H-PDMS is removed to obtain a stamp (n) The stamp mold (o) An ABC pattern is transferred from PDMS stamp to an Ormo-comp polymer (p) The Ormo-comp polymer is exposed to a wide band UV light (q) The PDMS stamp is removed (r) A hardened Ormo-comp polymer forms a cladding layer of the ABC filter (s) An Ormo-core polymer is injected into the channel to form the waveguide core (t) An Ormo-comp polymer is deposited (u) The Ormo-comp layer is cured by exposing the UV light to form the final filter.

Fig. 3
Fig. 3

Optical-microscope photograph of an asymmetric waveguide coupler pattern on SU8 photoresist; the cross-sectional dimensions are 6.8 μm × 6 μm and 11.3 μm × 6 μm and the gap is about 2.3 μm.

Fig. 4
Fig. 4

Optical-microscope photograph of an asymmetric Bragg coupler mold; the positive photoresist filled into the wider waveguide groove; the final cross-sectional dimensions are 6.8 μm × 6 μm and 9.6 μm × 5 μm, and the gap is about 2.1 μm.

Fig. 5
Fig. 5

SEM micrograph of the PDMS-hPDMS waveguide with grating; the SEM was titled about 30° (the grating period is 500 nm and the depth is about 450 nm).

Fig. 6
Fig. 6

SEM micrograph of the UV epoxy groove showing the intact grating pattern inside the groove (the dimensions are 6.8 μm × 6 μm and 9.6 μm × 5 μm, the gap is about 2.4 μm, the grating length is about 15 mm, and the grating depth is about 450 nm.

Fig. 7
Fig. 7

Optical-micrograph of the output end of an ABC-based filter (a) the wider waveguide (cross-sectional dimension is 5 μm × 9.6 μm), and (b) the narrower waveguide (cross-sectional dimension is 6 μm × 6.8 μm). It shows that there is no unguided layer outside the core region.

Fig. 8
Fig. 8

(a) The first compound mode of the coupler structure; (b) the second compound modes of the coupler (cross-sectional dimension are 4.5 μm × 10 μm and 6 μm × 7 μm gap s = 2 μm; (c) fundamental mode of the single waveguide; width w = 10 μm, depth d = 4.5 μm; (d) fundamental mode of the single waveguide; width w = 7 μm. depth d = 6 μm.

Fig. 9
Fig. 9

The coupling coefficient and the compound-individual mode overlap integrals vs. depth of grating-engraved waveguide (a) s = 3 μm; (b) s = 2.5 μm; (c) s = 2 μm. The waveguide widths are 10 μm for wide waveguide and 7 μm for narrow one.

Fig. 13
Fig. 13

Transmission spectra of an ABC-based polymeric waveguide filter. The red line represents the experimental result and the blue line represents the simulation result.

Fig. 10
Fig. 10

Schematic of experimental setup for waveguide output mode field measurement.

Fig. 11
Fig. 11

Near field intensity distribution of two output waveguides: (a) the wide waveguide (with grating), (b) the narrow waveguide (without grating). The ASE laser with the power of 3 mW was shone onto the narrow waveguide.

Fig. 12
Fig. 12

Schematic of experimental setup for transmission spectrum measurement.

Metrics