Abstract

An efficient approach was put forward to keep real-time image stabilization based on opto-electronic hybrid processing, by which image motion vector can be effectively detected and point spread function (PSF) was accurately modeled instantaneously, it will alleviate greatly the complexity of image restoration algorithm. The approach applies to arbitrary motion blurred images. We have also constructed an image stabilization measurement system. The experimental results show that the proposed method has advantages of real time and preferable effect.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yitzhaky, I. Mor, A. Lantzman, and N. S. Kopeika, “Direct method for restoration of motion-blurred images,” J. Opt. Soc. Am. A 15(6), 1512–1519 (1998).
    [CrossRef]
  2. G. Hochman, Y. Yitzhaky, N. S. Kopeika, Y. Lauber, M. Citroen, and A. Stern, “Restoration of images captured by a staggered time delay and integration camera in the presence of mechanical vibrations,” Appl. Opt. 43(22), 4345–4354 (2004).
    [CrossRef] [PubMed]
  3. B. Golik and D. Wueller, “Measurement method for image stabilizing systems,” Proc. SPIE 6502, 65020O, 65020O–10 (2007).
    [CrossRef]
  4. H. Choi, J.-P. Kim, M.-G. Song, W. C. Kim, N. C. Park, Y. P. Park, and K. S. Park, “Effects of motion of an imaging system and optical image stabilizer on the modulation transfer function,” Opt. Express 16(25), 21132–21141 (2008).
    [CrossRef] [PubMed]
  5. B. Likhterov and N. S. Kopeika, “Motion-blurred image restoration using modified inverse all-pole filters,” J. Electron. Imaging 13(2), 257–263 (2004).
    [CrossRef]
  6. S. Prasad, “Statistical-information-based performance criteria for Richardson-Lucy image deblurring,” J. Opt. Soc. Am. A 19(7), 1286–1296 (2002).
    [CrossRef]
  7. Y. Tian, C. Rao, L. Zhu, and X. Rao, “Modified self-deconvolution restoration algorithm for adaptive-optics solar images,” Opt. Lett. 35(15), 2541–2543 (2010).
    [CrossRef] [PubMed]
  8. V. Loyev and Y. Yitzhaky, “Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images,” Appl. Opt. 45(11), 2444–2452 (2006).
    [CrossRef] [PubMed]
  9. J. Zhang, Q. Zhang, and G. He, “Blind deconvolution of a noisy degraded image,” Appl. Opt. 48(12), 2350–2355 (2009).
    [CrossRef] [PubMed]
  10. C. W. Chiu, P. C.-P. Chao, and D. Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn. 43(6), 2582–2584 (2007).
    [CrossRef]
  11. J. F. Barrera, C. Vargas, M. Tebaldi, R. Torroba, and N. Bolognini, “Known-plaintext attack on a joint transform correlator encrypting system,” Opt. Lett. 35(21), 3553–3555 (2010).
    [CrossRef] [PubMed]
  12. H. T. Chang and C. T. T. Chen, “Enhanced optical image verification based on Joint Transform Correlator adopting Fourier hologram,” Opt. Rev. 11(3), 165–169 (2004).
    [CrossRef]
  13. A. R. Alsamman, “Spatially efficient reference phase-encrypted joint transform correlator,” Appl. Opt. 49(10), B104–B110 (2010).
    [CrossRef] [PubMed]
  14. J. A. Butt and T. D. Wilkinson, “Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator,” Opt. Commun. 262(1), 17–26 (2006).
    [CrossRef]
  15. J. Widjaja, “Wavelet filter for improving detection performance of compression-based joint transform correlator,” Appl. Opt. 49(30), 5768–5776 (2010).
    [CrossRef] [PubMed]
  16. O. Hadar, I. Dror, and N. S. Kopeika, “Numerical calculation of image motion and vibration modulation transfer functions-a new method,” Proc. SPIE 1533, 61–74 (1991).
    [CrossRef]

2010

2009

2008

2007

C. W. Chiu, P. C.-P. Chao, and D. Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn. 43(6), 2582–2584 (2007).
[CrossRef]

B. Golik and D. Wueller, “Measurement method for image stabilizing systems,” Proc. SPIE 6502, 65020O, 65020O–10 (2007).
[CrossRef]

2006

J. A. Butt and T. D. Wilkinson, “Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator,” Opt. Commun. 262(1), 17–26 (2006).
[CrossRef]

V. Loyev and Y. Yitzhaky, “Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images,” Appl. Opt. 45(11), 2444–2452 (2006).
[CrossRef] [PubMed]

2004

B. Likhterov and N. S. Kopeika, “Motion-blurred image restoration using modified inverse all-pole filters,” J. Electron. Imaging 13(2), 257–263 (2004).
[CrossRef]

G. Hochman, Y. Yitzhaky, N. S. Kopeika, Y. Lauber, M. Citroen, and A. Stern, “Restoration of images captured by a staggered time delay and integration camera in the presence of mechanical vibrations,” Appl. Opt. 43(22), 4345–4354 (2004).
[CrossRef] [PubMed]

H. T. Chang and C. T. T. Chen, “Enhanced optical image verification based on Joint Transform Correlator adopting Fourier hologram,” Opt. Rev. 11(3), 165–169 (2004).
[CrossRef]

2002

1998

1991

O. Hadar, I. Dror, and N. S. Kopeika, “Numerical calculation of image motion and vibration modulation transfer functions-a new method,” Proc. SPIE 1533, 61–74 (1991).
[CrossRef]

Alsamman, A. R.

Barrera, J. F.

Bolognini, N.

Butt, J. A.

J. A. Butt and T. D. Wilkinson, “Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator,” Opt. Commun. 262(1), 17–26 (2006).
[CrossRef]

Chang, H. T.

H. T. Chang and C. T. T. Chen, “Enhanced optical image verification based on Joint Transform Correlator adopting Fourier hologram,” Opt. Rev. 11(3), 165–169 (2004).
[CrossRef]

Chao, P. C.-P.

C. W. Chiu, P. C.-P. Chao, and D. Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn. 43(6), 2582–2584 (2007).
[CrossRef]

Chen, C. T. T.

H. T. Chang and C. T. T. Chen, “Enhanced optical image verification based on Joint Transform Correlator adopting Fourier hologram,” Opt. Rev. 11(3), 165–169 (2004).
[CrossRef]

Chiu, C. W.

C. W. Chiu, P. C.-P. Chao, and D. Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn. 43(6), 2582–2584 (2007).
[CrossRef]

Choi, H.

Citroen, M.

Dror, I.

O. Hadar, I. Dror, and N. S. Kopeika, “Numerical calculation of image motion and vibration modulation transfer functions-a new method,” Proc. SPIE 1533, 61–74 (1991).
[CrossRef]

Golik, B.

B. Golik and D. Wueller, “Measurement method for image stabilizing systems,” Proc. SPIE 6502, 65020O, 65020O–10 (2007).
[CrossRef]

Hadar, O.

O. Hadar, I. Dror, and N. S. Kopeika, “Numerical calculation of image motion and vibration modulation transfer functions-a new method,” Proc. SPIE 1533, 61–74 (1991).
[CrossRef]

He, G.

Hochman, G.

Kim, J.-P.

Kim, W. C.

Kopeika, N. S.

G. Hochman, Y. Yitzhaky, N. S. Kopeika, Y. Lauber, M. Citroen, and A. Stern, “Restoration of images captured by a staggered time delay and integration camera in the presence of mechanical vibrations,” Appl. Opt. 43(22), 4345–4354 (2004).
[CrossRef] [PubMed]

B. Likhterov and N. S. Kopeika, “Motion-blurred image restoration using modified inverse all-pole filters,” J. Electron. Imaging 13(2), 257–263 (2004).
[CrossRef]

Y. Yitzhaky, I. Mor, A. Lantzman, and N. S. Kopeika, “Direct method for restoration of motion-blurred images,” J. Opt. Soc. Am. A 15(6), 1512–1519 (1998).
[CrossRef]

O. Hadar, I. Dror, and N. S. Kopeika, “Numerical calculation of image motion and vibration modulation transfer functions-a new method,” Proc. SPIE 1533, 61–74 (1991).
[CrossRef]

Lantzman, A.

Lauber, Y.

Likhterov, B.

B. Likhterov and N. S. Kopeika, “Motion-blurred image restoration using modified inverse all-pole filters,” J. Electron. Imaging 13(2), 257–263 (2004).
[CrossRef]

Loyev, V.

Mor, I.

Park, K. S.

Park, N. C.

Park, Y. P.

Prasad, S.

Rao, C.

Rao, X.

Song, M.-G.

Stern, A.

Tebaldi, M.

Tian, Y.

Torroba, R.

Vargas, C.

Widjaja, J.

Wilkinson, T. D.

J. A. Butt and T. D. Wilkinson, “Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator,” Opt. Commun. 262(1), 17–26 (2006).
[CrossRef]

Wu, D. Y.

C. W. Chiu, P. C.-P. Chao, and D. Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn. 43(6), 2582–2584 (2007).
[CrossRef]

Wueller, D.

B. Golik and D. Wueller, “Measurement method for image stabilizing systems,” Proc. SPIE 6502, 65020O, 65020O–10 (2007).
[CrossRef]

Yitzhaky, Y.

Zhang, J.

Zhang, Q.

Zhu, L.

Appl. Opt.

IEEE Trans. Magn.

C. W. Chiu, P. C.-P. Chao, and D. Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn. 43(6), 2582–2584 (2007).
[CrossRef]

J. Electron. Imaging

B. Likhterov and N. S. Kopeika, “Motion-blurred image restoration using modified inverse all-pole filters,” J. Electron. Imaging 13(2), 257–263 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

J. A. Butt and T. D. Wilkinson, “Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator,” Opt. Commun. 262(1), 17–26 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

H. T. Chang and C. T. T. Chen, “Enhanced optical image verification based on Joint Transform Correlator adopting Fourier hologram,” Opt. Rev. 11(3), 165–169 (2004).
[CrossRef]

Proc. SPIE

B. Golik and D. Wueller, “Measurement method for image stabilizing systems,” Proc. SPIE 6502, 65020O, 65020O–10 (2007).
[CrossRef]

O. Hadar, I. Dror, and N. S. Kopeika, “Numerical calculation of image motion and vibration modulation transfer functions-a new method,” Proc. SPIE 1533, 61–74 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of opto-electronic hybrid JTC for real-time image stabilization.

Fig. 2
Fig. 2

Experiment set-up (part).

Fig. 3
Fig. 3

Experimental measurement system.

Fig. 4
Fig. 4

Comparison, (a) before processing, (b) after processing.

Fig. 5
Fig. 5

Cross-correlation peak intensity.

Fig. 6
Fig. 6

experimental results and comparisons, (a) Original image at v = 2.5 um/ms; (b) Stabilized image at v = 2.5 um/ms; (c) Original image at v = 12.5 um/ms; (d) Stabilized image at v = 12.5 um/ms.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

g ( x , y ) = h ( x , y ) f ( x , y ) + n ( x , y )
g ( x , y ) = h ( x , y ) f ( x , y )
h ( x , y ) = i = 1 n 1 T v i ( x , y )
| S ( u , v ) | 2 = | R ( u , v ) | 2 + | T ( u , v ) | 2 + R ( u , v ) T * ( u , v ) exp [ 2 i π u Δ x 2 i π v ( 2 a + Δ y ) ] + T ( u , v ) R * ( u , v ) exp [ 2 i π u Δ x + 2 i π v ( 2 a + Δ y ) ]
c ( x , y ) = r ( x , y ) r ( x , y ) + t ( x , y ) t ( x , y ) + r ( x , y ) t ( x , y ) × δ ( x + Δ x , y + 2 a + Δ y ) + t ( x , y ) r ( x , y ) × δ ( x Δ x , y 2 a Δ y )
v i ( x , y ) = ( P i P i + 1 ( x , y ) ) ; P i P i + 1 ( x , y ) = p i + 1 ( x , y ) p i ( x , y )
f i + 1 ( x , y ) = f i ( x , y ) ( h i ( x , y ) g ( x , y ) h i ( x , y ) f i ( x , y ) )
Φ a x , a y ( x , y ) = 1 a x a y Φ ( x b x a x , y b y a y )
W f ( a x , a y ; b x , b y ) = 1 a x a y f ( x , y ) × Φ ( x b x a x , y b y a y ) d x d y
Φ ( x , y ) = [ 1 ( x 2 + y 2 ) ] exp ( x 2 + y 2 2 )
Ψ ( ω x , ω y ) = 4 π 2 ( ω x 2 + ω y 2 ) exp [ 2 π ( ω x 2 + ω y 2 ) ]

Metrics