Abstract

Abstract: Neural optical imaging can evaluate cortical hemodynamic fluctuations which reflect neural activity and disease state. We evaluate the use of vertical-cavity surface-emitting lasers (VCSELs) as illumination source for simultaneous imaging of blood flow and tissue oxygenation dynamics ex vivo and in vivo and demonstrate optical imaging of blood flow changes and oxygenation changes in response to induced ischemia. Using VCSELs we show a rapid switching from a single-mode to a special multi-mode rapid current sweep operation and noise values reduced to within a factor of 40% compared to non-coherent LED illumination. These VCSELs are promising for long-term portable continuous monitoring of brain dynamics in freely moving animals.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [CrossRef] [PubMed]
  2. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
    [CrossRef]
  3. A. Ponticorvo and A. K. Dunn, “How to build a Laser Speckle Contrast Imaging (LSCI) system to monitor blood flow,” J. Vis. Exp. 45(45), (2010), http://www.jove.com/details.stp?id=2004 .
    [PubMed]
  4. O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009–016014 (2011).
    [CrossRef] [PubMed]
  5. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
    [CrossRef] [PubMed]
  6. A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express 1(1), 246–259 (2010).
    [CrossRef]
  7. J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol. 55(22), 6857–6866 (2010).
    [CrossRef] [PubMed]
  8. C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
    [CrossRef] [PubMed]
  9. T. Durduran, C. Zhou, B. L. Edlow, G. Q. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009).
    [CrossRef] [PubMed]
  10. M. J. Rossow, W. W. Mantulin, and E. Gratton, “Scanning laser image correlation for measurement of flow,” J. Biomed. Opt. 15(2), 026003 (2010).
    [CrossRef] [PubMed]
  11. O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
    [CrossRef] [PubMed]
  12. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
    [CrossRef] [PubMed]
  13. V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron 38(4), 529–545 (2003).
    [CrossRef] [PubMed]
  14. A. Grinvald, R. Siegel, E. Bartfeld, and R. D. Frostig, “High resolution optical imaging of functional architecture in the awake primate,” Soc. Neurosci. Abstracts 17, 1016 (1991).
  15. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
    [CrossRef] [PubMed]
  16. C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 27(17), 4572–4586 (2007).
    [CrossRef] [PubMed]
  17. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
    [CrossRef] [PubMed]
  18. E. Gratton, V. Toronov, U. Wolf, and M. Wolf, “Detection of brain activity by near-infrared light,” in Biomedical Optical Imaging, J. G. Fujimoto and D. Farkas, eds. (Oxford University Press, New York, 2009), p. 356.
  19. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
    [CrossRef]
  20. T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12(6), 062105 (2007).
    [CrossRef]
  21. H. Watanabe, F. Homae, T. Nakano, and G. Taga, “Functional activation in diverse regions of the developing brain of human infants,” Neuroimage 43(2), 346–357 (2008).
    [CrossRef] [PubMed]
  22. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
    [CrossRef] [PubMed]
  23. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
    [CrossRef] [PubMed]
  24. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
    [CrossRef] [PubMed]
  25. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
    [CrossRef] [PubMed]
  26. Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
    [CrossRef] [PubMed]
  27. T. O’Sullivan, E. A. Munro, N. Parashurama, C. Conca, S. S. Gambhir, J. S. Harris, and O. Levi, “Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules,” Opt. Express 18(12), 12513–12525 (2010).
    [CrossRef] [PubMed]
  28. R. Michalzik and K. J. Ebeling, “Operating principles of VCSELs,” in Vertical-Cavity Surface-Emitting Laser Devices, H. Li and K. Iga, eds. (Springer-Verlag, Berlin, 2003), pp. 53–98.
  29. T. T. Lee, P. G. Lim, J. S. Harris, K. V. Shenoy, and S. J. Smith, “Low-frequency noise characterization of near-IR VCSELs for functional brain imaging,” Proc. SPIE 6852, 68422T, 68422T-8 (2008).
    [CrossRef]
  30. A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13(4), 044038 (2008).
    [CrossRef] [PubMed]
  31. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, Hoboken, NJ, 2007).
  32. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976).
    [CrossRef]
  33. G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 555–562 (2009).
    [CrossRef]
  34. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
    [CrossRef] [PubMed]
  35. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17(16), 13904–13917 (2009).
    [CrossRef] [PubMed]
  36. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
    [CrossRef]

2011 (1)

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009–016014 (2011).
[CrossRef] [PubMed]

2010 (7)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express 1(1), 246–259 (2010).
[CrossRef]

J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol. 55(22), 6857–6866 (2010).
[CrossRef] [PubMed]

M. J. Rossow, W. W. Mantulin, and E. Gratton, “Scanning laser image correlation for measurement of flow,” J. Biomed. Opt. 15(2), 026003 (2010).
[CrossRef] [PubMed]

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

A. Ponticorvo and A. K. Dunn, “How to build a Laser Speckle Contrast Imaging (LSCI) system to monitor blood flow,” J. Vis. Exp. 45(45), (2010), http://www.jove.com/details.stp?id=2004 .
[PubMed]

T. O’Sullivan, E. A. Munro, N. Parashurama, C. Conca, S. S. Gambhir, J. S. Harris, and O. Levi, “Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules,” Opt. Express 18(12), 12513–12525 (2010).
[CrossRef] [PubMed]

2009 (7)

M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
[CrossRef] [PubMed]

Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
[CrossRef] [PubMed]

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 555–562 (2009).
[CrossRef]

P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17(16), 13904–13917 (2009).
[CrossRef] [PubMed]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Q. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

2008 (7)

J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
[CrossRef] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
[CrossRef]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

H. Watanabe, F. Homae, T. Nakano, and G. Taga, “Functional activation in diverse regions of the developing brain of human infants,” Neuroimage 43(2), 346–357 (2008).
[CrossRef] [PubMed]

T. T. Lee, P. G. Lim, J. S. Harris, K. V. Shenoy, and S. J. Smith, “Low-frequency noise characterization of near-IR VCSELs for functional brain imaging,” Proc. SPIE 6852, 68422T, 68422T-8 (2008).
[CrossRef]

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13(4), 044038 (2008).
[CrossRef] [PubMed]

2007 (4)

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef]

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12(6), 062105 (2007).
[CrossRef]

2003 (2)

2001 (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef]

1991 (1)

A. Grinvald, R. Siegel, E. Bartfeld, and R. D. Frostig, “High resolution optical imaging of functional architecture in the awake primate,” Soc. Neurosci. Abstracts 17, 1016 (1991).

1990 (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

1986 (1)

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

1976 (1)

Agoncillo, T.

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

Andermann, M. L.

Andrews, M. K.

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

Ayata, C.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

Bartfeld, E.

A. Grinvald, R. Siegel, E. Bartfeld, and R. D. Frostig, “High resolution optical imaging of functional architecture in the awake primate,” Soc. Neurosci. Abstracts 17, 1016 (1991).

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

Bolay, H.

Bordier, C.

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

Bouchard, M. B.

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef]

Buck, A.

Burgess, S. A.

Calcinaghi, N.

Chance, B.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12(6), 062105 (2007).
[CrossRef]

Chen, B. R.

Chen-Bee, C. H.

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

Choe, R.

Choi, B.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009–016014 (2011).
[CrossRef] [PubMed]

J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol. 55(22), 6857–6866 (2010).
[CrossRef] [PubMed]

J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
[CrossRef] [PubMed]

Conca, C.

Craggs, G.

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 555–562 (2009).
[CrossRef]

Cucchiara, B. L.

Cuccia, D.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009–016014 (2011).
[CrossRef] [PubMed]

Dale, A. M.

Das, A.

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

Detre, J. A.

Devor, A.

Du, C.

Duncan, D. D.

Dunn, A. K.

A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express 1(1), 246–259 (2010).
[CrossRef]

A. Ponticorvo and A. K. Dunn, “How to build a Laser Speckle Contrast Imaging (LSCI) system to monitor blood flow,” J. Vis. Exp. 45(45), (2010), http://www.jove.com/details.stp?id=2004 .
[PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

Durduran, T.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Q. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

Edlow, B. L.

Eucker, S. A.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef]

Fischer, I.

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 555–562 (2009).
[CrossRef]

Foust, A. J.

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13(4), 044038 (2008).
[CrossRef] [PubMed]

Friess, S. H.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

Frostig, R. D.

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

A. Grinvald, R. Siegel, E. Bartfeld, and R. D. Frostig, “High resolution optical imaging of functional architecture in the awake primate,” Soc. Neurosci. Abstracts 17, 1016 (1991).

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Gambhir, S. S.

Gilbert, C. D.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Goodman, J. W.

Gopal, A.

Gratton, E.

M. J. Rossow, W. W. Mantulin, and E. Gratton, “Scanning laser image correlation for measurement of flow,” J. Biomed. Opt. 15(2), 026003 (2010).
[CrossRef] [PubMed]

Greenberg, J. H.

Grinvald, A.

A. Grinvald, R. Siegel, E. Bartfeld, and R. D. Frostig, “High resolution optical imaging of functional architecture in the awake primate,” Soc. Neurosci. Abstracts 17, 1016 (1991).

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Guizar-Iturbide, I.

Haiss, F.

Hamaoka, T.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12(6), 062105 (2007).
[CrossRef]

Harris, J. S.

T. O’Sullivan, E. A. Munro, N. Parashurama, C. Conca, S. S. Gambhir, J. S. Harris, and O. Levi, “Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules,” Opt. Express 18(12), 12513–12525 (2010).
[CrossRef] [PubMed]

T. T. Lee, P. G. Lim, J. S. Harris, K. V. Shenoy, and S. J. Smith, “Low-frequency noise characterization of near-IR VCSELs for functional brain imaging,” Proc. SPIE 6852, 68422T, 68422T-8 (2008).
[CrossRef]

Hillman, E. M.

Hillman, E. M. C.

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

Homae, F.

H. Watanabe, F. Homae, T. Nakano, and G. Taga, “Functional activation in diverse regions of the developing brain of human infants,” Neuroimage 43(2), 346–357 (2008).
[CrossRef] [PubMed]

Huang, Y. C.

J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol. 55(22), 6857–6866 (2010).
[CrossRef] [PubMed]

Hyman, B. T.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

Ichord, R. N.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

Jones, P. B.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

Kalatsky, V. A.

V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron 38(4), 529–545 (2003).
[CrossRef] [PubMed]

Kasner, S. E.

Kazmi, S. M. S.

Kim, M. N.

Kirkpatrick, S. J.

Lee, T. T.

T. T. Lee, P. G. Lim, J. S. Harris, K. V. Shenoy, and S. J. Smith, “Low-frequency noise characterization of near-IR VCSELs for functional brain imaging,” Proc. SPIE 6852, 68422T, 68422T-8 (2008).
[CrossRef]

Levi, O.

Lieke, E.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Lieke, E. E.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

Lim, P. G.

T. T. Lee, P. G. Lim, J. S. Harris, K. V. Shenoy, and S. J. Smith, “Low-frequency noise characterization of near-IR VCSELs for functional brain imaging,” Proc. SPIE 6852, 68422T, 68422T-8 (2008).
[CrossRef]

Luo, Z.

Mandre, S. K.

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 555–562 (2009).
[CrossRef]

Mantulin, W. W.

M. J. Rossow, W. W. Mantulin, and E. Gratton, “Scanning laser image correlation for measurement of flow,” J. Biomed. Opt. 15(2), 026003 (2010).
[CrossRef] [PubMed]

Margulies, S. S.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

Martínez-Niconoff, G.

McCully, K. K.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12(6), 062105 (2007).
[CrossRef]

Moskowitz, M. A.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

Muñoz-Lopez, J.

J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol. 55(22), 6857–6866 (2010).
[CrossRef] [PubMed]

Munro, E. A.

Nakano, T.

H. Watanabe, F. Homae, T. Nakano, and G. Taga, “Functional activation in diverse regions of the developing brain of human infants,” Neuroimage 43(2), 346–357 (2008).
[CrossRef] [PubMed]

O’Sullivan, T.

Pan, Y.

Parashurama, N.

Parthasarathy, A. B.

Ponticorvo, A.

A. Ponticorvo and A. K. Dunn, “How to build a Laser Speckle Contrast Imaging (LSCI) system to monitor blood flow,” J. Vis. Exp. 45(45), (2010), http://www.jove.com/details.stp?id=2004 .
[PubMed]

Putt, M. E.

Quaresima, V.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12(6), 062105 (2007).
[CrossRef]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef]

Ralston, J.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

Ramirez-San-Juan, J. C.

Ramírez-San-Juan, J. C.

J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol. 55(22), 6857–6866 (2010).
[CrossRef] [PubMed]

Ramos-García, R.

J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol. 55(22), 6857–6866 (2010).
[CrossRef] [PubMed]

J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
[CrossRef] [PubMed]

Rector, D. M.

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13(4), 044038 (2008).
[CrossRef] [PubMed]

Rojas, M. J.

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13(4), 044038 (2008).
[CrossRef] [PubMed]

Rossow, M. J.

M. J. Rossow, W. W. Mantulin, and E. Gratton, “Scanning laser image correlation for measurement of flow,” J. Biomed. Opt. 15(2), 026003 (2010).
[CrossRef] [PubMed]

Salazar-Hermenegildo, N.

J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol. 55(22), 6857–6866 (2010).
[CrossRef] [PubMed]

Scheffold, F.

Schei, J. L.

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13(4), 044038 (2008).
[CrossRef] [PubMed]

Shah, Q.

Shenoy, K. V.

T. T. Lee, P. G. Lim, J. S. Harris, K. V. Shenoy, and S. J. Smith, “Low-frequency noise characterization of near-IR VCSELs for functional brain imaging,” Proc. SPIE 6852, 68422T, 68422T-8 (2008).
[CrossRef]

Shin, H. K.

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

Siegel, R.

A. Grinvald, R. Siegel, E. Bartfeld, and R. D. Frostig, “High resolution optical imaging of functional architecture in the awake primate,” Soc. Neurosci. Abstracts 17, 1016 (1991).

Sirotin, Y. B.

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

Smith, S. J.

T. T. Lee, P. G. Lim, J. S. Harris, K. V. Shenoy, and S. J. Smith, “Low-frequency noise characterization of near-IR VCSELs for functional brain imaging,” Proc. SPIE 6852, 68422T, 68422T-8 (2008).
[CrossRef]

Stryker, M. P.

V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron 38(4), 529–545 (2003).
[CrossRef] [PubMed]

Taga, G.

H. Watanabe, F. Homae, T. Nakano, and G. Taga, “Functional activation in diverse regions of the developing brain of human infants,” Neuroimage 43(2), 346–357 (2008).
[CrossRef] [PubMed]

Thienpont, H.

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 555–562 (2009).
[CrossRef]

Thompson, O. B.

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

Tom, W. J.

Ts’o, D. Y.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

Verschaffelt, G.

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 555–562 (2009).
[CrossRef]

Völker, A. C.

Watanabe, H.

H. Watanabe, F. Homae, T. Nakano, and G. Taga, “Functional activation in diverse regions of the developing brain of human infants,” Neuroimage 43(2), 346–357 (2008).
[CrossRef] [PubMed]

Weber, B.

Wiesel, T. N.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Wolf, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef]

Wyss, M. T.

Xiong, Y.

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

Yamamoto, K.

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12(6), 062105 (2007).
[CrossRef]

Yang, O.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009–016014 (2011).
[CrossRef] [PubMed]

Yodh, A. G.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Q. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

Yu, G.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

Yu, G. Q.

Yuan, Z.

Zakharov, P.

Zhang, X. J.

Zhou, C.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Q. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

Zunzunegui, C.

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

G. Craggs, G. Verschaffelt, S. K. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 555–562 (2009).
[CrossRef]

J. Biomed. Opt. (10)

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13(4), 044038 (2008).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef]

T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt. 12(6), 062105 (2007).
[CrossRef]

P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008).
[CrossRef] [PubMed]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009–016014 (2011).
[CrossRef] [PubMed]

M. J. Rossow, W. W. Mantulin, and E. Gratton, “Scanning laser image correlation for measurement of flow,” J. Biomed. Opt. 15(2), 026003 (2010).
[CrossRef] [PubMed]

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007).
[CrossRef] [PubMed]

J. Neurosci. (1)

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 27(17), 4572–4586 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Vis. Exp. (1)

A. Ponticorvo and A. K. Dunn, “How to build a Laser Speckle Contrast Imaging (LSCI) system to monitor blood flow,” J. Vis. Exp. 45(45), (2010), http://www.jove.com/details.stp?id=2004 .
[PubMed]

Nature (1)

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Neuroimage (1)

H. Watanabe, F. Homae, T. Nakano, and G. Taga, “Functional activation in diverse regions of the developing brain of human infants,” Neuroimage 43(2), 346–357 (2008).
[CrossRef] [PubMed]

Neuron (1)

V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron 38(4), 529–545 (2003).
[CrossRef] [PubMed]

Opt. Express (6)

J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Q. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
[CrossRef] [PubMed]

T. O’Sullivan, E. A. Munro, N. Parashurama, C. Conca, S. S. Gambhir, J. S. Harris, and O. Levi, “Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules,” Opt. Express 18(12), 12513–12525 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17(16), 13904–13917 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (1)

J. C. Ramírez-San-Juan, Y. C. Huang, N. Salazar-Hermenegildo, R. Ramos-García, J. Muñoz-Lopez, and B. Choi, “Integration of image exposure time into a modified laser speckle imaging method,” Phys. Med. Biol. 55(22), 6857–6866 (2010).
[CrossRef] [PubMed]

Physiol. Meas. (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[CrossRef] [PubMed]

Y. B. Sirotin, E. M. C. Hillman, C. Bordier, and A. Das, “Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates,” Proc. Natl. Acad. Sci. U.S.A. 106(43), 18390–18395 (2009).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. T. Lee, P. G. Lim, J. S. Harris, K. V. Shenoy, and S. J. Smith, “Low-frequency noise characterization of near-IR VCSELs for functional brain imaging,” Proc. SPIE 6852, 68422T, 68422T-8 (2008).
[CrossRef]

Soc. Neurosci. Abstracts (1)

A. Grinvald, R. Siegel, E. Bartfeld, and R. D. Frostig, “High resolution optical imaging of functional architecture in the awake primate,” Soc. Neurosci. Abstracts 17, 1016 (1991).

Other (3)

E. Gratton, V. Toronov, U. Wolf, and M. Wolf, “Detection of brain activity by near-infrared light,” in Biomedical Optical Imaging, J. G. Fujimoto and D. Farkas, eds. (Oxford University Press, New York, 2009), p. 356.

R. Michalzik and K. J. Ebeling, “Operating principles of VCSELs,” in Vertical-Cavity Surface-Emitting Laser Devices, H. Li and K. Iga, eds. (Springer-Verlag, Berlin, 2003), pp. 53–98.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, Hoboken, NJ, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup. (a) CCD camera utilizes two identical camera lenses to maintain one-to-one magnification. The switch is trigger-linked to the camera to alternate the illumination source every frame between an LED and a VCSEL. (b) cross section schematic of a VCSEL, where the effect of oxide aperture to confine the current inside the cavity is illustrated.

Fig. 2
Fig. 2

Far field intensity mode patterns for a VCSEL. (a) mode profiles for various individual current values to the VCSEL. (b) SW operation (enlarged) integrates the transverse modes over a single camera exposure time, to produce a more uniform intensity pattern.

Fig. 3
Fig. 3

(a) VCSEL spectral analysis showing narrow single mode (SM), shifted multi-mode (MM) and widened current sweep (SW) spectra. The FWHM spectral width values are indicated inside the figure. b) Measured interferogram envelope for SM VCSEL operation (red), showing characteristically long coherence length. In comparison, the measured envelopes for MM (green) and SW (black) operations are shown. c) Measured interferogram envelope for SW operation, in smaller path difference range. The values of lc , can be estimated from the fringe visibility vs. path difference values

Fig. 4
Fig. 4

Standard deviation over mean intensity values that are used to evaluate temporal and spatial noise values. (a) Opal glass, (b) ex vivo mouse brain slice, (c) in vivo rat brain for n = 7 rats. A significant decline in noise values is seen corresponding to decreasing laser coherence.

Fig. 5
Fig. 5

Temporal noise maps for 3 illumination sources. The pixel-wise standard deviation over mean (σ/μ) intensity values was calculated in each case on 256 frames. (a) LED illumination has low noise throughout. (b) Current sweep (SW) mode illumination has noise levels near that of the LED, particularly on the cortical surface. (c) Single mode (SM) illumination has noise levels an order of magnitude higher than the LED throughout. (d)-(f) show the same analysis repeated, on 256 images binned through 64 trials. While the qualitative characteristics remain similar, we see approximately 1/8 the noise values as seen in the initial case.

Fig. 6
Fig. 6

Cortical spreading depression in a mouse brain slice, illuminated by a VCSEL in current sweep (SW) operation. (a) Average intensity values within a cortical region of interest, a clear reflectivity change is observed during the spreading depression. Two plot lines represent different ROI sizes within the cortex, to show the effects of pixel binning on eliminating excess noise. (b) Brain slice image, during spreading depression propagation.

Fig. 7
Fig. 7

Imaging of ischemia induced changes in oxygenation and in blood flow in a rat brain. (a) The percent change in reflected intensity (mainly due to deoxy-Hb) during SW operation (blue scale) overlaid on the speckle contrast ratio values measured during SM operation. The blood vessels on the surface of the brain are easily observed, while the overlay with the oxygenation changes illustrates the benefits of a co-registered image. (b) Calculated percent change in flow values. A decrease of the flow values in the blood vessels and capillary bed is observed. Some artifacts can be observed from small bubbles in the cortical window.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C R S p e c k l e = σ / I
l c = 2 ln 2 π λ 2 Δ λ 1 / 2

Metrics