J. Berezovsky, M. Borunda, and E. Heller, “Imaging coherent transport in graphene (part I): mapping universal conductance fluctuations,” Nanotechnology 21(27), 274013 (2010).

[CrossRef]
[PubMed]

X. Chen, “Subspace-based optimization method for solving inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 48(1), 42–49 (2010).

[CrossRef]

K. Agarwal, L. Pan, and X. Chen, “Subspace-Based Optimization Method for Reconstruction of 2-D Complex Anisotropic Dielectric Objects,” IEEE Trans. Microwave Theory Tech. 58(4), 1065–1074 (2010).

[CrossRef]

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).

[CrossRef]

Y. Zhong, X. Chen, and K. Agarwal, “An improved subspace-based optimization method and its implementation in solving three-dimensional inverse problems,” IEEE Trans. Geosci. Remote Sens. 48(10), 3763–3768 (2010).

[CrossRef]

X. Chen and Y. Zhong, “Influence of multiple scattering on subwavelength imaging: transverse electric case,” J. Opt. Soc. Am. A 27(2), 245–250 (2010).

[CrossRef]

L. Pan, X. Chen, Y. Zhong, and S. P. Yeo, “Comparison among the variants of subspace-based optimization method for addressing inverse scattering problems: transverse electric case,” J. Opt. Soc. Am. A 27(10), 2208–2215 (2010).

[CrossRef]

X. Chen, “Application of signal-subspace and optimization methods in reconstructing extended scatterers,” J. Opt. Soc. Am. A 26(4), 1022–1026 (2009).

[CrossRef]

Y. Zhong and X. Chen, “Twofold subspace-based optimization method for solving inverse scattering problems,” Inverse Probl. 25(8), 085003 (2009).

[CrossRef]

J. Li, H. Liu, and J. Zou, “Strengthened linear sampling method with a reference ball,” SIAM J. Sci. Comput. 31(6), 4013–4040 (2009).

[CrossRef]

K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18(6), 6366–6381 (2007).

[CrossRef]

Y. Zhong and X. Chen, “MUSIC imaging and electromagneitc inverse scattering of multiple-scattering small anisotropic spheres,” IEEE Trans. Antenn. Propag. 55(12), 3542–3549 (2007).

[CrossRef]

A. Sentenac, C. Guerin, and P. Chaumet, “Influence of multiple scattering on the resolution of an imaging system: a Cramer-Rao analysis,” Opt. Express 15(3), 1340–1347 (2007).

[CrossRef]
[PubMed]

L. Crocco, M. D’Urso, and T. Isernia, “Faithful non-linear imaging from only-amplitude measurements of incident and total fields,” Opt. Express 15(7), 3804–3815 (2007).

[CrossRef]
[PubMed]

A. Sentenac, P. Chaumet, and K. Belkebir, “Beyond the Rayleigh criterion: Grating assisted far-field optical diffraction tomography,” Phys. Rev. Lett. 97(24), 243901 (2006).

[CrossRef]

O. Bucci, L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on open lines,” J. Opt. Soc. Am. A 23(10), 2566–2577 (2006).

[CrossRef]

S. Norton, “Iterative inverse scattering algorithms: Methods of computing Frechet derivatives,” J. Acoust. Soc. Am. 106(5), 2653–2660 (1999).

[CrossRef]

W. Chew and Y. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Trans. Med. Imaging 9(2), 218–225 (1990).

[CrossRef]
[PubMed]

J. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propag. 13(3), 334–341 (1965).

[CrossRef]

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).

[CrossRef]

K. Agarwal, L. Pan, and X. Chen, “Subspace-Based Optimization Method for Reconstruction of 2-D Complex Anisotropic Dielectric Objects,” IEEE Trans. Microwave Theory Tech. 58(4), 1065–1074 (2010).

[CrossRef]

Y. Zhong, X. Chen, and K. Agarwal, “An improved subspace-based optimization method and its implementation in solving three-dimensional inverse problems,” IEEE Trans. Geosci. Remote Sens. 48(10), 3763–3768 (2010).

[CrossRef]

K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18(6), 6366–6381 (2007).

[CrossRef]

A. Sentenac, P. Chaumet, and K. Belkebir, “Beyond the Rayleigh criterion: Grating assisted far-field optical diffraction tomography,” Phys. Rev. Lett. 97(24), 243901 (2006).

[CrossRef]

K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22(9), 1889–1897 (2005).

[CrossRef]

J. Berezovsky, M. Borunda, and E. Heller, “Imaging coherent transport in graphene (part I): mapping universal conductance fluctuations,” Nanotechnology 21(27), 274013 (2010).

[CrossRef]
[PubMed]

J. Berezovsky, M. Borunda, and E. Heller, “Imaging coherent transport in graphene (part I): mapping universal conductance fluctuations,” Nanotechnology 21(27), 274013 (2010).

[CrossRef]
[PubMed]

M. Braun, L. Chirolli, and G. Burkard, “Signature of chirality in scanning-probe imaging of charge flow in graphene,” Phys. Rev. B 77(11), 115433 (2008).

[CrossRef]

M. Braun, L. Chirolli, and G. Burkard, “Signature of chirality in scanning-probe imaging of charge flow in graphene,” Phys. Rev. B 77(11), 115433 (2008).

[CrossRef]

A. Sentenac, C. Guerin, and P. Chaumet, “Influence of multiple scattering on the resolution of an imaging system: a Cramer-Rao analysis,” Opt. Express 15(3), 1340–1347 (2007).

[CrossRef]
[PubMed]

A. Sentenac, P. Chaumet, and K. Belkebir, “Beyond the Rayleigh criterion: Grating assisted far-field optical diffraction tomography,” Phys. Rev. Lett. 97(24), 243901 (2006).

[CrossRef]

X. Chen and Y. Zhong, “Influence of multiple scattering on subwavelength imaging: transverse electric case,” J. Opt. Soc. Am. A 27(2), 245–250 (2010).

[CrossRef]

L. Pan, X. Chen, Y. Zhong, and S. P. Yeo, “Comparison among the variants of subspace-based optimization method for addressing inverse scattering problems: transverse electric case,” J. Opt. Soc. Am. A 27(10), 2208–2215 (2010).

[CrossRef]

X. Chen, “Subspace-based optimization method for solving inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 48(1), 42–49 (2010).

[CrossRef]

Y. Zhong, X. Chen, and K. Agarwal, “An improved subspace-based optimization method and its implementation in solving three-dimensional inverse problems,” IEEE Trans. Geosci. Remote Sens. 48(10), 3763–3768 (2010).

[CrossRef]

K. Agarwal, L. Pan, and X. Chen, “Subspace-Based Optimization Method for Reconstruction of 2-D Complex Anisotropic Dielectric Objects,” IEEE Trans. Microwave Theory Tech. 58(4), 1065–1074 (2010).

[CrossRef]

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).

[CrossRef]

Y. Zhong and X. Chen, “Twofold subspace-based optimization method for solving inverse scattering problems,” Inverse Probl. 25(8), 085003 (2009).

[CrossRef]

X. Chen, “Application of signal-subspace and optimization methods in reconstructing extended scatterers,” J. Opt. Soc. Am. A 26(4), 1022–1026 (2009).

[CrossRef]

X. Chen, “MUSIC imaging applied to total internal reflection tomography,” J. Opt. Soc. Am. A 25(2), 357–364 (2008).

[CrossRef]

K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18(6), 6366–6381 (2007).

[CrossRef]

Y. Zhong and X. Chen, “MUSIC imaging and electromagneitc inverse scattering of multiple-scattering small anisotropic spheres,” IEEE Trans. Antenn. Propag. 55(12), 3542–3549 (2007).

[CrossRef]

W. Chew and Y. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Trans. Med. Imaging 9(2), 218–225 (1990).

[CrossRef]
[PubMed]

M. Braun, L. Chirolli, and G. Burkard, “Signature of chirality in scanning-probe imaging of charge flow in graphene,” Phys. Rev. B 77(11), 115433 (2008).

[CrossRef]

L. Crocco, M. D’Urso, and T. Isernia, “Faithful non-linear imaging from only-amplitude measurements of incident and total fields,” Opt. Express 15(7), 3804–3815 (2007).

[CrossRef]
[PubMed]

O. Bucci, L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on open lines,” J. Opt. Soc. Am. A 23(10), 2566–2577 (2006).

[CrossRef]

L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on a closed curve,” J. Opt. Soc. Am. A 21(4), 622–631 (2004).

[CrossRef]

L. Crocco, M. D’Urso, and T. Isernia, “Faithful non-linear imaging from only-amplitude measurements of incident and total fields,” Opt. Express 15(7), 3804–3815 (2007).

[CrossRef]
[PubMed]

O. Bucci, L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on open lines,” J. Opt. Soc. Am. A 23(10), 2566–2577 (2006).

[CrossRef]

L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on a closed curve,” J. Opt. Soc. Am. A 21(4), 622–631 (2004).

[CrossRef]

J. Berezovsky, M. Borunda, and E. Heller, “Imaging coherent transport in graphene (part I): mapping universal conductance fluctuations,” Nanotechnology 21(27), 274013 (2010).

[CrossRef]
[PubMed]

L. Crocco, M. D’Urso, and T. Isernia, “Faithful non-linear imaging from only-amplitude measurements of incident and total fields,” Opt. Express 15(7), 3804–3815 (2007).

[CrossRef]
[PubMed]

O. Bucci, L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on open lines,” J. Opt. Soc. Am. A 23(10), 2566–2577 (2006).

[CrossRef]

L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on a closed curve,” J. Opt. Soc. Am. A 21(4), 622–631 (2004).

[CrossRef]

J. Li, H. Liu, and J. Zou, “Strengthened linear sampling method with a reference ball,” SIAM J. Sci. Comput. 31(6), 4013–4040 (2009).

[CrossRef]

J. Li, H. Liu, and J. Zou, “Strengthened linear sampling method with a reference ball,” SIAM J. Sci. Comput. 31(6), 4013–4040 (2009).

[CrossRef]

S. Norton, “Iterative inverse scattering algorithms: Methods of computing Frechet derivatives,” J. Acoust. Soc. Am. 106(5), 2653–2660 (1999).

[CrossRef]

L. Pan, X. Chen, Y. Zhong, and S. P. Yeo, “Comparison among the variants of subspace-based optimization method for addressing inverse scattering problems: transverse electric case,” J. Opt. Soc. Am. A 27(10), 2208–2215 (2010).

[CrossRef]

K. Agarwal, L. Pan, and X. Chen, “Subspace-Based Optimization Method for Reconstruction of 2-D Complex Anisotropic Dielectric Objects,” IEEE Trans. Microwave Theory Tech. 58(4), 1065–1074 (2010).

[CrossRef]

J. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propag. 13(3), 334–341 (1965).

[CrossRef]

A. Sentenac, C. Guerin, and P. Chaumet, “Influence of multiple scattering on the resolution of an imaging system: a Cramer-Rao analysis,” Opt. Express 15(3), 1340–1347 (2007).

[CrossRef]
[PubMed]

A. Sentenac, P. Chaumet, and K. Belkebir, “Beyond the Rayleigh criterion: Grating assisted far-field optical diffraction tomography,” Phys. Rev. Lett. 97(24), 243901 (2006).

[CrossRef]

K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22(9), 1889–1897 (2005).

[CrossRef]

W. Chew and Y. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Trans. Med. Imaging 9(2), 218–225 (1990).

[CrossRef]
[PubMed]

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).

[CrossRef]

L. Pan, X. Chen, Y. Zhong, and S. P. Yeo, “Comparison among the variants of subspace-based optimization method for addressing inverse scattering problems: transverse electric case,” J. Opt. Soc. Am. A 27(10), 2208–2215 (2010).

[CrossRef]

X. Chen and Y. Zhong, “Influence of multiple scattering on subwavelength imaging: transverse electric case,” J. Opt. Soc. Am. A 27(2), 245–250 (2010).

[CrossRef]

Y. Zhong, X. Chen, and K. Agarwal, “An improved subspace-based optimization method and its implementation in solving three-dimensional inverse problems,” IEEE Trans. Geosci. Remote Sens. 48(10), 3763–3768 (2010).

[CrossRef]

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).

[CrossRef]

Y. Zhong and X. Chen, “Twofold subspace-based optimization method for solving inverse scattering problems,” Inverse Probl. 25(8), 085003 (2009).

[CrossRef]

K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18(6), 6366–6381 (2007).

[CrossRef]

Y. Zhong and X. Chen, “MUSIC imaging and electromagneitc inverse scattering of multiple-scattering small anisotropic spheres,” IEEE Trans. Antenn. Propag. 55(12), 3542–3549 (2007).

[CrossRef]

J. Li, H. Liu, and J. Zou, “Strengthened linear sampling method with a reference ball,” SIAM J. Sci. Comput. 31(6), 4013–4040 (2009).

[CrossRef]

Y. Zhong and X. Chen, “MUSIC imaging and electromagneitc inverse scattering of multiple-scattering small anisotropic spheres,” IEEE Trans. Antenn. Propag. 55(12), 3542–3549 (2007).

[CrossRef]

J. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propag. 13(3), 334–341 (1965).

[CrossRef]

X. Chen, “Subspace-based optimization method for solving inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 48(1), 42–49 (2010).

[CrossRef]

Y. Zhong, X. Chen, and K. Agarwal, “An improved subspace-based optimization method and its implementation in solving three-dimensional inverse problems,” IEEE Trans. Geosci. Remote Sens. 48(10), 3763–3768 (2010).

[CrossRef]

W. Chew and Y. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Trans. Med. Imaging 9(2), 218–225 (1990).

[CrossRef]
[PubMed]

K. Agarwal, L. Pan, and X. Chen, “Subspace-Based Optimization Method for Reconstruction of 2-D Complex Anisotropic Dielectric Objects,” IEEE Trans. Microwave Theory Tech. 58(4), 1065–1074 (2010).

[CrossRef]

Y. Zhong and X. Chen, “Twofold subspace-based optimization method for solving inverse scattering problems,” Inverse Probl. 25(8), 085003 (2009).

[CrossRef]

S. Norton, “Iterative inverse scattering algorithms: Methods of computing Frechet derivatives,” J. Acoust. Soc. Am. 106(5), 2653–2660 (1999).

[CrossRef]

P. Carney and J. Schotland, “Theory of total-internal reflection tomography,” J. Opt. Soc. Am. A 20(3), 542–547 (2003).

[CrossRef]

L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on a closed curve,” J. Opt. Soc. Am. A 21(4), 622–631 (2004).

[CrossRef]

K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22(9), 1889–1897 (2005).

[CrossRef]

O. Bucci, L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on open lines,” J. Opt. Soc. Am. A 23(10), 2566–2577 (2006).

[CrossRef]

X. Chen, “MUSIC imaging applied to total internal reflection tomography,” J. Opt. Soc. Am. A 25(2), 357–364 (2008).

[CrossRef]

X. Chen, “Application of signal-subspace and optimization methods in reconstructing extended scatterers,” J. Opt. Soc. Am. A 26(4), 1022–1026 (2009).

[CrossRef]

X. Chen and Y. Zhong, “Influence of multiple scattering on subwavelength imaging: transverse electric case,” J. Opt. Soc. Am. A 27(2), 245–250 (2010).

[CrossRef]

L. Pan, X. Chen, Y. Zhong, and S. P. Yeo, “Comparison among the variants of subspace-based optimization method for addressing inverse scattering problems: transverse electric case,” J. Opt. Soc. Am. A 27(10), 2208–2215 (2010).

[CrossRef]

J. Berezovsky, M. Borunda, and E. Heller, “Imaging coherent transport in graphene (part I): mapping universal conductance fluctuations,” Nanotechnology 21(27), 274013 (2010).

[CrossRef]
[PubMed]

K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18(6), 6366–6381 (2007).

[CrossRef]

A. Sentenac, C. Guerin, and P. Chaumet, “Influence of multiple scattering on the resolution of an imaging system: a Cramer-Rao analysis,” Opt. Express 15(3), 1340–1347 (2007).

[CrossRef]
[PubMed]

L. Crocco, M. D’Urso, and T. Isernia, “Faithful non-linear imaging from only-amplitude measurements of incident and total fields,” Opt. Express 15(7), 3804–3815 (2007).

[CrossRef]
[PubMed]

M. Braun, L. Chirolli, and G. Burkard, “Signature of chirality in scanning-probe imaging of charge flow in graphene,” Phys. Rev. B 77(11), 115433 (2008).

[CrossRef]

A. Sentenac, P. Chaumet, and K. Belkebir, “Beyond the Rayleigh criterion: Grating assisted far-field optical diffraction tomography,” Phys. Rev. Lett. 97(24), 243901 (2006).

[CrossRef]

X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010).

[CrossRef]

J. Li, H. Liu, and J. Zou, “Strengthened linear sampling method with a reference ball,” SIAM J. Sci. Comput. 31(6), 4013–4040 (2009).

[CrossRef]