Abstract

We fabricated polarization-dependent and polarization-independent microlens arrays (MLA) through the electrohydrodynamic instability of the optically anisotropic organic layer. The anisotropic flow induced by the instability of the organic layer leads to making the lens profile on the patterned electrode. We can easily control the polarization dependence of the MLA by controlling the surface alignment properties, even with the optically anisotropic organic layer. This method is a straightforward, fast, and reliable process for MLA fabrication since it does not require cumbersome developing and molding processes.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
    [CrossRef] [PubMed]
  2. Y. Tanaka, M. Yamagata, Y. Komma, S. Mizuno, and K. Nagashima, “Lens design for optical head compatible with compact disk and digital versatile disk,” Jpn. J. Appl. Phys. 37(Part 1, No. 4B), 2179–2183 (1998).
    [CrossRef]
  3. K. Rastani, C. Lin, and J. S. Patel, “Active-fiber star coupler that uses arrays of microlenses and liquid-crystal modulators,” Appl. Opt. 31(16), 3046–3050 (1992).
    [CrossRef] [PubMed]
  4. M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
    [CrossRef]
  5. T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, “Ultraviolet-cured polymer microlens arrays,” Appl. Opt. 38(14), 2991–2996 (1999).
    [CrossRef] [PubMed]
  6. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
    [CrossRef]
  7. J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
    [CrossRef]
  8. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
    [CrossRef]
  9. S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
    [CrossRef]
  10. X.-C. Yuan, W. X. Yu, N. Q. Ngo, and W. C. Cheong, “Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask,” Opt. Express 10(7), 303–308 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-303 .
    [PubMed]
  11. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
    [CrossRef]
  12. H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
    [CrossRef]
  13. T. Scharf, “Static birefringent microlenses,” Opt. Lasers Eng. 43(3-5), 317–327 (2005).
    [CrossRef]
  14. M. He, X. Yuan, N. Q. Ngo, W. C. Cheong, and J. Bu, “Reflow technique for the fabrication of an elliptical microlens array in sol-gel material,” Appl. Opt. 42(36), 7174–7178 (2003).
    [CrossRef] [PubMed]
  15. D. B. Do, N. D. Lai, C. Y. Wu, J. H. Lin, and C. C. Hsu, “Fabrication of ellipticity-controlled microlens arrays by controlling the parameters of the multiple-exposure two-beam interference technique,” Appl. Opt. 50(4), 579–585 (2011).
    [CrossRef] [PubMed]
  16. E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrically induced structure formation and pattern transfer,” Nature 403(6772), 874–877 (2000).
    [CrossRef] [PubMed]
  17. E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrohydrodynamic instabilities in polymer films,” Europhys. Lett. 53(4), 518–524 (2001).
    [CrossRef]
  18. M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
    [CrossRef]

2011 (1)

2006 (3)

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[CrossRef]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
[CrossRef] [PubMed]

M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
[CrossRef]

2005 (1)

T. Scharf, “Static birefringent microlenses,” Opt. Lasers Eng. 43(3-5), 317–327 (2005).
[CrossRef]

2004 (1)

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

2003 (3)

S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

M. He, X. Yuan, N. Q. Ngo, W. C. Cheong, and J. Bu, “Reflow technique for the fabrication of an elliptical microlens array in sol-gel material,” Appl. Opt. 42(36), 7174–7178 (2003).
[CrossRef] [PubMed]

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

2002 (2)

2001 (1)

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrohydrodynamic instabilities in polymer films,” Europhys. Lett. 53(4), 518–524 (2001).
[CrossRef]

2000 (1)

E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrically induced structure formation and pattern transfer,” Nature 403(6772), 874–877 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

Y. Tanaka, M. Yamagata, Y. Komma, S. Mizuno, and K. Nagashima, “Lens design for optical head compatible with compact disk and digital versatile disk,” Jpn. J. Appl. Phys. 37(Part 1, No. 4B), 2179–2183 (1998).
[CrossRef]

1997 (1)

M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
[CrossRef]

1992 (1)

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

Arai, J.

Bernasconi, P. N.

M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
[CrossRef]

Bonnecaze, R. T.

M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
[CrossRef]

Bu, J.

Chen, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Cheong, W. C.

Collister, E.

M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
[CrossRef]

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

del Valle, S.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Dickey, M. D.

M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
[CrossRef]

Do, D. B.

Fang, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[CrossRef]

Gale, M. T.

M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
[CrossRef]

Gandorfer, A.

M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
[CrossRef]

Hayakawa, S.

He, M.

Holcombe, T.

M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
[CrossRef]

Hong, M. H.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[CrossRef]

Hsu, C. C.

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

Kang, S.

S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

Karasawa, T.

Kawai, H.

Kim, S.-M.

S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[CrossRef]

Komma, Y.

Y. Tanaka, M. Yamagata, Y. Komma, S. Mizuno, and K. Nagashima, “Lens design for optical head compatible with compact disk and digital versatile disk,” Jpn. J. Appl. Phys. 37(Part 1, No. 4B), 2179–2183 (1998).
[CrossRef]

Kumar, A. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[CrossRef]

Lai, N. D.

Lim, C. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[CrossRef]

Lin, C.

Lin, J. H.

Lin, Y.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[CrossRef]

Lub, J.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Luk’yanchuk, B. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[CrossRef]

Mizuno, S.

Y. Tanaka, M. Yamagata, Y. Komma, S. Mizuno, and K. Nagashima, “Lens design for optical head compatible with compact disk and digital versatile disk,” Jpn. J. Appl. Phys. 37(Part 1, No. 4B), 2179–2183 (1998).
[CrossRef]

Mori, M.

Nagashima, K.

Y. Tanaka, M. Yamagata, Y. Komma, S. Mizuno, and K. Nagashima, “Lens design for optical head compatible with compact disk and digital versatile disk,” Jpn. J. Appl. Phys. 37(Part 1, No. 4B), 2179–2183 (1998).
[CrossRef]

Ngo, N. Q.

Okamoto, T.

Okano, F.

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[CrossRef]

Patel, J. S.

Pedersen, J.

M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
[CrossRef]

Povel, H.

M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
[CrossRef]

Rahman, M.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[CrossRef]

Raines, A.

M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
[CrossRef]

Rastani, K.

Russell, T. P.

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrohydrodynamic instabilities in polymer films,” Europhys. Lett. 53(4), 518–524 (2001).
[CrossRef]

E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrically induced structure formation and pattern transfer,” Nature 403(6772), 874–877 (2000).
[CrossRef] [PubMed]

Sato, H.

Schaffer, E.

E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrically induced structure formation and pattern transfer,” Nature 403(6772), 874–877 (2000).
[CrossRef] [PubMed]

Schäffer, E.

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrohydrodynamic instabilities in polymer films,” Europhys. Lett. 53(4), 518–524 (2001).
[CrossRef]

Scharf, T.

T. Scharf, “Static birefringent microlenses,” Opt. Lasers Eng. 43(3-5), 317–327 (2005).
[CrossRef]

Schütz, H.

M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
[CrossRef]

Seo, I.

Sreenivasan, S. V.

M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
[CrossRef]

Stallinga, S.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Stapert, H. R.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Steiner, P.

M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
[CrossRef]

Steiner, U.

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrohydrodynamic instabilities in polymer films,” Europhys. Lett. 53(4), 518–524 (2001).
[CrossRef]

E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrically induced structure formation and pattern transfer,” Nature 403(6772), 874–877 (2000).
[CrossRef] [PubMed]

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

Tanaka, Y.

Y. Tanaka, M. Yamagata, Y. Komma, S. Mizuno, and K. Nagashima, “Lens design for optical head compatible with compact disk and digital versatile disk,” Jpn. J. Appl. Phys. 37(Part 1, No. 4B), 2179–2183 (1998).
[CrossRef]

Thurn-Albrecht, T.

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrohydrodynamic instabilities in polymer films,” Europhys. Lett. 53(4), 518–524 (2001).
[CrossRef]

E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrically induced structure formation and pattern transfer,” Nature 403(6772), 874–877 (2000).
[CrossRef] [PubMed]

Tsiartas, P.

M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
[CrossRef]

van der Zande, B. M. I.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Varahramyan, K.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Verstegen, E. J. K.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Wang, W.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

Willson, C. G.

M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
[CrossRef]

Wu, C. Y.

Xie, Q.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[CrossRef]

Yamagata, M.

Y. Tanaka, M. Yamagata, Y. Komma, S. Mizuno, and K. Nagashima, “Lens design for optical head compatible with compact disk and digital versatile disk,” Jpn. J. Appl. Phys. 37(Part 1, No. 4B), 2179–2183 (1998).
[CrossRef]

Yu, W. X.

Yuan, X.

Yuan, X.-C.

Adv. Funct. Mater. (1)

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[CrossRef]

Chem. Mater. (1)

M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).
[CrossRef]

Europhys. Lett. (1)

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrohydrodynamic instabilities in polymer films,” Europhys. Lett. 53(4), 518–524 (2001).
[CrossRef]

J. Micromech. Microeng. (1)

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[CrossRef]

J. Phys. D Appl. Phys. (1)

S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Tanaka, M. Yamagata, Y. Komma, S. Mizuno, and K. Nagashima, “Lens design for optical head compatible with compact disk and digital versatile disk,” Jpn. J. Appl. Phys. 37(Part 1, No. 4B), 2179–2183 (1998).
[CrossRef]

Meas. Sci. Technol. (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
[CrossRef]

Microelectron. Eng. (1)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[CrossRef]

Nature (1)

E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrically induced structure formation and pattern transfer,” Nature 403(6772), 874–877 (2000).
[CrossRef] [PubMed]

Opt. Eng. (1)

M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

T. Scharf, “Static birefringent microlenses,” Opt. Lasers Eng. 43(3-5), 317–327 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics