Abstract

We present a novel reflective quarter-wave plate comprised of subwavelength meanderline elements. The device is operational over the long-wave infrared (LWIR) spectrum, with significant spectral and angular bandwidths. Power reflection is approximately 70% over the majority of the LWIR. Efficient conversion from a 45° linear polarization state into circular polarization is demonstrated from finite-element electromagnetic simulations and from broadband polarimetric measurements.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Korte, B. Jordanov, D. Kolev, and D. Tsankov, “Total reflection prisms as achromatic IR retarders,” Appl. Spectrosc. 42(8), 1394–1400 (1988).
    [CrossRef]
  2. R. M. A. Azzam and H. K. Khanfar, “In-line broadband 270 ° (3λ/4) chevron four-reflection wave retarders,” Appl. Opt. 47(27), 4878–4883 (2008).
    [CrossRef] [PubMed]
  3. E. Cojocaru, T. Julea, and F. Nichitiu, “Infrared thin-film totally reflecting quarter-wave retarders,” Appl. Opt. 30(28), 4124–4125 (1991).
    [CrossRef] [PubMed]
  4. R. M. A. Azzam and C. L. Spinu, “Achromatic angle-insensitive infrared quarter-wave retarder based on total internal reflection at the Si-SiO2 interface,” J. Opt. Soc. Am. A 21(10), 2019–2022 (2004).
    [CrossRef]
  5. J. Liu and R. M. A. Azzam, “Infrared quarter-wave reflection retarders designed with high-spatial-frequency dielectric surface-relief gratings on a gold substrate at oblique incidence,” Appl. Opt. 35(28), 5557–5562 (1996).
    [CrossRef] [PubMed]
  6. V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
    [CrossRef]
  7. Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express 17(4), 2871–2879 (2009).
    [CrossRef] [PubMed]
  8. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
    [CrossRef]
  9. K. C. Hwang, “Optimization of broadband twist reflector for Ku-band application,” Electron. Lett. 44(3), 210–211 (2008).
    [CrossRef]
  10. K. Y. Han and B. A. Lail, “Genetically-engineered meanderline twist reflector,” Antennas and Propagation Society International Symposium, AP-S (2008).
  11. J. Hanfling, G. Jerinic, and L. Lewis, “Twist reflector design using E-type and H-type modes,” IEEE Trans. Antenn. Propag. 29(4), 622–629 (1981).
    [CrossRef]
  12. B. A. Munk, Frequency-Selective Surfaces: Theory and Design (Wiley, 2000).
  13. S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18(13), 13345–13360 (2010).
    [CrossRef] [PubMed]
  14. J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
    [CrossRef]
  15. C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
    [CrossRef]
  16. R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987).
    [CrossRef]
  17. J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Electromagn. Res. Lett. 6, 55–60 (2009).
    [CrossRef]
  18. P. A. Rizzi, Microwave Engineering: Passive Circuits (Prentice-Hall, 1988).
  19. C. S. R. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. A. M. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express 18(13), 13309–13320 (2010).
    [CrossRef] [PubMed]
  20. B. J. Rubin and B. Singh, “Study of meander line delay in circuit boards,” IEEE Trans. Microw. Theory Tech. 48(9), 1452–1460 (2000).
    [CrossRef]
  21. R.T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave J. 43, 190–198 (2000).
  22. N. R. Labadie and S. K. Sharma, “A novel compact volumetric metamaterial structure with asymmetric transmission and polarization conversion,” Metamaterials (Amst.) 4(1), 44–57 (2010).
    [CrossRef]
  23. W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5(5), 1113–1116 (2008).
    [CrossRef]
  24. D. Goldstein, Polarized Light (Marcel Dekker, 2003).
  25. J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
    [CrossRef]
  26. J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
    [CrossRef]

2010 (3)

2009 (2)

Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express 17(4), 2871–2879 (2009).
[CrossRef] [PubMed]

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Electromagn. Res. Lett. 6, 55–60 (2009).
[CrossRef]

2008 (4)

K. C. Hwang, “Optimization of broadband twist reflector for Ku-band application,” Electron. Lett. 44(3), 210–211 (2008).
[CrossRef]

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5(5), 1113–1116 (2008).
[CrossRef]

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

R. M. A. Azzam and H. K. Khanfar, “In-line broadband 270 ° (3λ/4) chevron four-reflection wave retarders,” Appl. Opt. 47(27), 4878–4883 (2008).
[CrossRef] [PubMed]

2007 (1)

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

2004 (1)

2003 (1)

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

2000 (2)

B. J. Rubin and B. Singh, “Study of meander line delay in circuit boards,” IEEE Trans. Microw. Theory Tech. 48(9), 1452–1460 (2000).
[CrossRef]

R.T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave J. 43, 190–198 (2000).

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

1996 (1)

1994 (1)

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

1991 (1)

1988 (1)

1987 (1)

R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987).
[CrossRef]

1984 (1)

C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
[CrossRef]

1981 (1)

J. Hanfling, G. Jerinic, and L. Lewis, “Twist reflector design using E-type and H-type modes,” IEEE Trans. Antenn. Propag. 29(4), 622–629 (1981).
[CrossRef]

Azzam, R. M. A.

Boreman, G. D.

S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18(13), 13345–13360 (2010).
[CrossRef] [PubMed]

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5(5), 1113–1116 (2008).
[CrossRef]

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

Butler, C. A. M.

Chu, R.-S.

R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987).
[CrossRef]

Cojocaru, E.

Folks, W. R.

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5(5), 1113–1116 (2008).
[CrossRef]

Ginn, J. C.

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5(5), 1113–1116 (2008).
[CrossRef]

Gordon, R.

Hanfling, J.

J. Hanfling, G. Jerinic, and L. Lewis, “Twist reflector design using E-type and H-type modes,” IEEE Trans. Antenn. Propag. 29(4), 622–629 (1981).
[CrossRef]

Hibbins, A. P.

Hwang, K. C.

K. C. Hwang, “Optimization of broadband twist reflector for Ku-band application,” Electron. Lett. 44(3), 210–211 (2008).
[CrossRef]

Jerinic, G.

J. Hanfling, G. Jerinic, and L. Lewis, “Twist reflector design using E-type and H-type modes,” IEEE Trans. Antenn. Propag. 29(4), 622–629 (1981).
[CrossRef]

Jordanov, B.

Julea, T.

Kaipa, C. S. R.

Khanfar, H. K.

Kolev, D.

Korte, E. H.

Labadie, N. R.

N. R. Labadie and S. K. Sharma, “A novel compact volumetric metamaterial structure with asymmetric transmission and polarization conversion,” Metamaterials (Amst.) 4(1), 44–57 (2010).
[CrossRef]

Lail, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

Lee, K.-M.

R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987).
[CrossRef]

Levrel, J. R.

C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
[CrossRef]

Lewis, L.

J. Hanfling, G. Jerinic, and L. Lewis, “Twist reflector design using E-type and H-type modes,” IEEE Trans. Antenn. Propag. 29(4), 622–629 (1981).
[CrossRef]

Liu, J.

Ma, J.-P.

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Electromagn. Res. Lett. 6, 55–60 (2009).
[CrossRef]

Mahdjoubi, K.

C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
[CrossRef]

Marhefka, R. J.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

Medina, F.

Mesa, F.

Munk, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Nichitiu, F.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Okorkov, V. N.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Panchenko, V. Y.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Pang, Y.

Pryor, J. B.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

Raynolds, J. E.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

Remski, R.T.

R.T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave J. 43, 190–198 (2000).

Rubin, B. J.

B. J. Rubin and B. Singh, “Study of meander line delay in circuit boards,” IEEE Trans. Microw. Theory Tech. 48(9), 1452–1460 (2000).
[CrossRef]

Russkikh, B. V.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Seminogov, V. N.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Sharma, S. K.

N. R. Labadie and S. K. Sharma, “A novel compact volumetric metamaterial structure with asymmetric transmission and polarization conversion,” Metamaterials (Amst.) 4(1), 44–57 (2010).
[CrossRef]

Shelton, D. J.

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5(5), 1113–1116 (2008).
[CrossRef]

Singh, B.

B. J. Rubin and B. Singh, “Study of meander line delay in circuit boards,” IEEE Trans. Microw. Theory Tech. 48(9), 1452–1460 (2000).
[CrossRef]

Sokolov, V. I.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Spinu, C. L.

Terret, C.

C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
[CrossRef]

Tharp, J. S.

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5(5), 1113–1116 (2008).
[CrossRef]

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

Tsankov, D.

Wadsworth, S. L.

S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18(13), 13345–13360 (2010).
[CrossRef] [PubMed]

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

Yakovlev, A. B.

Yakunin, V. P.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Yin, Y.-Z.

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Electromagn. Res. Lett. 6, 55–60 (2009).
[CrossRef]

Zhang, J.-C.

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Electromagn. Res. Lett. 6, 55–60 (2009).
[CrossRef]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Electron. Lett. (1)

K. C. Hwang, “Optimization of broadband twist reflector for Ku-band application,” Electron. Lett. 44(3), 210–211 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (4)

J. Hanfling, G. Jerinic, and L. Lewis, “Twist reflector design using E-type and H-type modes,” IEEE Trans. Antenn. Propag. 29(4), 622–629 (1981).
[CrossRef]

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
[CrossRef]

R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

B. J. Rubin and B. Singh, “Study of meander line delay in circuit boards,” IEEE Trans. Microw. Theory Tech. 48(9), 1452–1460 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

Metamaterials (Amst.) (1)

N. R. Labadie and S. K. Sharma, “A novel compact volumetric metamaterial structure with asymmetric transmission and polarization conversion,” Metamaterials (Amst.) 4(1), 44–57 (2010).
[CrossRef]

Microwave J. (1)

R.T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave J. 43, 190–198 (2000).

Opt. Eng. (1)

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Opt. Express (3)

Phys. Status Solidi C (1)

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5(5), 1113–1116 (2008).
[CrossRef]

Prog. Electromagn. Res. Lett. (1)

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Electromagn. Res. Lett. 6, 55–60 (2009).
[CrossRef]

Other (4)

P. A. Rizzi, Microwave Engineering: Passive Circuits (Prentice-Hall, 1988).

B. A. Munk, Frequency-Selective Surfaces: Theory and Design (Wiley, 2000).

K. Y. Han and B. A. Lail, “Genetically-engineered meanderline twist reflector,” Antennas and Propagation Society International Symposium, AP-S (2008).

D. Goldstein, Polarized Light (Marcel Dekker, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram of a) meanderline geometry patterned on a dielectric cavity above groundplane, and b) equivalent circuit model of multilayer dielectric system with meanderline discontinuity as the shunt admittance Y m.

Fig. 2
Fig. 2

Depiction of a) meanderline geometry with incident linearly-polarized wave, reflected CP field, and multiple reflections inside dielectric cavity. Part b) represents the equivalent circuit elements of the meanderline grid that are encountered by the respective TE and TM modes of the incident wave.

Fig. 3
Fig. 3

Illustration of a) unit cell configuration in HFSS, where the yellow arrow represents the incident beam, and b) the optimized design parameters of the meanderline geometry.

Fig. 4
Fig. 4

Optical constants for ZnS measured by IR spectroscopic ellipsometry.

Fig. 5
Fig. 5

Simulated polarimetric and power reflection parameters from HFSS, where a) is the spectral phase retardance, b) is the axial ratio, c) is the polarization-averaged power reflection coefficient, and d) is the polarization conversion ratio.

Fig. 6
Fig. 6

SEM image of fabricated meanderline FSS array.

Fig. 7
Fig. 7

Measured quantities from the IR-VASE, consisting of a) the phase retardance, b) axial ratio, c) average power reflection, and d) polarization conversion ratio.

Fig. 8
Fig. 8

Angular dependence of a) the phase retardance and b) the axial ratio over a 20° span around the optimum 45° angle of incidence.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P C R = ( R T E i R T M exp ( i δ ) ) 2 2 ( R T E + R T M ) ,
R t o t a l = 1 2 ( R T E + R T M ) .
A R = 1 / ( tan [ 1 2 arcsin { sin ( 2 ψ ) sin ( δ ) } ] ) .

Metrics