Abstract

An all-optical incoherent scheme for generation of binary phase-coded ultra-wideband (UWB) signals is proposed and experimentally demonstrated. The binary phase coding is performed based on all-optical phase modulation in a semiconductor optical amplifier (SOA) and phase modulation to intensity modulation (PM-IM) conversion in a fiber delay interferometer (DI) that serves as a multichannel frequency discriminator. By locating the phase-modulated light waves at the positive and negative slopes of the DI transmission spectra, binary phase encoded UWB codes (0 and π) are generated. We also experimentally demonstrate a bipolar UWB coding system with a code length of 4, operating at 1.25 Gb/s. And the decoding is analyzed as well. Our proposed system has potential application in future high-speed UWB impulse radio over optical fiber access networks.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. FCC, Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems, (2002).
  2. M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband Radio-Over-Optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
    [CrossRef]
  3. J. Yao, “Photonics for Ultrawideband communications,” IEEE Microw. Mag. 10(4), 82–95 (2009).
    [CrossRef]
  4. J.-Y. Zheng, M.-J. Zhang, A.-B. Wang, and Y.-C. Wang, “Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback,” Opt. Lett. 35(11), 1734–1736 (2010).
    [CrossRef] [PubMed]
  5. S. Pan and J. Yao, “UWB-Over-Fiber Communications: Modulation and Transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
    [CrossRef]
  6. X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
    [CrossRef]
  7. X. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009).
    [CrossRef] [PubMed]
  8. H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
    [CrossRef]
  9. F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express 18(24), 24588–24594 (2010).
    [CrossRef] [PubMed]
  10. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett. 32(10), 1223–1225 (2007).
    [CrossRef] [PubMed]
  11. Y. Dai and J. Yao, “Multi-User UWB-over-Fiber System Based on High-Chip-Count Phase Coding,” in Proceedings of OFC/NFOEC, (2008).
  12. S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, “Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture,” Opt. Lett. 34(20), 3092–3094 (2009).
    [CrossRef] [PubMed]
  13. Q. Wang and J. Yao, “Approach to all-optical bipolar direct-sequence ultrawideband coding,” Opt. Lett. 33(9), 1017–1019 (2008).
    [CrossRef] [PubMed]
  14. Y. Dai and J. Yao, “High-chip-count UWB bi-phase coding for multi-user UWB-over-fiber system,” J. Lightwave Technol. 27(11), 1448–1453 (2009).
    [CrossRef]
  15. P. Ou, Y. Zhang, and C.-X. Zhang, “Optical generation of binary-phase-coded, direct-sequence ultra-wideband signals by polarization modulation and FBG-based multi-channel frequency discriminator,” Opt. Express 16(7), 5130–5135 (2008).
    [CrossRef] [PubMed]
  16. E. Hamidi and A. M. Weiner, “Phase-Only Matched Filtering of Ultrawideband Arbitrary Microwave Waveforms via Optical Pulse Shaping,” J. Lightwave Technol. 26(15), 2355–2363 (2008).
    [CrossRef]
  17. I. S. Lin and A. M. Weiner, “Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals,” J. Lightwave Technol. 26(15), 2692–2699 (2008).
    [CrossRef]
  18. F. G. David, S. Reza, A. F. Mark, and L. G. Alex, “All-Optical Correlator for High-Speed OOK and DPSK Signals,” in Proceedings of COTA/ICQI, CMC3, (2008).

2010 (4)

2009 (5)

2008 (5)

2007 (1)

Ben Ezra, Y.

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband Radio-Over-Optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
[CrossRef]

Blaaberg, S.

Braidwood Gibbon, T.

Chen, H.

Chen, M.

Cheng, J. X.

H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
[CrossRef]

Dai, Y.

Dong, J.

Fu, S.

Gibbon, T. B.

X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
[CrossRef]

Hamidi, E.

Huang, D.

Le, T. T.

H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
[CrossRef]

Lembrikov, B. I.

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband Radio-Over-Optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
[CrossRef]

Lin, I. S.

Monroy, I. T.

X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
[CrossRef]

Ou, P.

Pan, S.

Pawlik, M.

Ran, M.

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband Radio-Over-Optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
[CrossRef]

Shum, P.

Tafur Monroy, I.

Wang, A.-B.

Wang, F.

Wang, H. W.

H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
[CrossRef]

Wang, Q.

Wang, S.

Wang, Y.-C.

Weiner, A. M.

Xie, S.

Xin, M.

Xu, E.

Xu, J.

Yao, J.

Yu, X.

X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
[CrossRef]

X. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009).
[CrossRef] [PubMed]

Zhang, C.-X.

Zhang, M.-J.

Zhang, X.

Zhang, Y.

Zheng, J.-Y.

IEEE Microw. Mag. (1)

J. Yao, “Photonics for Ultrawideband communications,” IEEE Microw. Mag. 10(4), 82–95 (2009).
[CrossRef]

IEEE Photon. J. (1)

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband Radio-Over-Optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Commun. (1)

H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope,” Opt. Commun. 281(7), 1813–1822 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Other (3)

FCC, Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems, (2002).

Y. Dai and J. Yao, “Multi-User UWB-over-Fiber System Based on High-Chip-Count Phase Coding,” in Proceedings of OFC/NFOEC, (2008).

F. G. David, S. Reza, A. F. Mark, and L. G. Alex, “All-Optical Correlator for High-Speed OOK and DPSK Signals,” in Proceedings of COTA/ICQI, CMC3, (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the CDMA-UWB coding system

Fig. 2
Fig. 2

(a) Output probe spectra (solid line) and the DI spectral response (dash line), (b) generated bipolar monocycle pulses at each AWG channel.

Fig. 3
Fig. 3

Generated temporal waveforms of 4-bit Walsh-Hadamard codes, (a)-(d) are C1, C2, C3, and C4, respectively.

Fig. 4
Fig. 4

Radio frequency spectra of the generated UWB codes, (a)-(d) are C1, C2, C3, and C4, respectively.

Fig. 5
Fig. 5

Waveforms of the binary phase-coded UWB data sequences, (a) CS2, and (b) CS3 respectively.

Fig. 6
Fig. 6

Normalized correlation results between (a) CS2 and C2, (b) CS2 and C3, (c) CS3 and C3, (d) CS3 and C2, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E i ( t ) = exp [ j ω i t + j β s ( t ) + Φ 0 ] ,
E o u t ( t ) = [ K ( ω i ω 0 ) + K β s ( t ) / t ] E i ( t ) .
P o u t ( t ) = K 2 ( ω i ω 0 ) 2 + K 2 β 2 ( s ( t ) / t ) 2 + 2 K 2 β ( ω i ω 0 ) s ( t ) / t .
P o u t ( t ) 2 K 2 ( ω i ω 0 ) β s ( t ) / t + γ D C ,

Metrics