Abstract

Thin metal slabs with plasmonic nano-voids buried within the skin depth (< 25 nm) of surface plasmon polaritons have been of theoretical as well as technical interests for many years due to its unique optical properties such as sharp absorbance dips and anti-crossing plasmonic dispersion characteristics. Unfortunately, such interesting plasmonic properties have not been experimentally reproduced, especially in the UV-Vis regime, owing to the involuntary surface roughness occurred in systems fabricated using conventional techniques. Here, we describe a versatile cryogenic-stripping approach for encapsulating a monolayer of nano-voids of virtually any arbitrary shapes underneath an atomically-smooth (δ < 0.55 nm) surface of a free-standing metal slab. By artificially varying the topography of the capping metal surface from ultra-smooth to moderately-rough, we show structural symmetricity in a nano-void-metal system can render the overall plasmonic responses becoming profoundly influenced by the surface smoothness. The current fabrication technique is thus of primary importance to the preparation of any kind of smooth nano-void-passivated metal slabs.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
    [PubMed]
  2. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94(5), 057401 (2005).
    [PubMed]
  3. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997).
    [PubMed]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
  5. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [PubMed]
  7. N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75(11), 1577 (1999).
  8. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
  9. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
  10. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
    [PubMed]
  11. T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express 14(5), 1965–1972 (2006).
    [PubMed]
  12. K. Ohtaka, H. Miyazaki, and A. Lucas, “Collective modes of void-surface coupled system,” Phys. Rev. B 21(2), 467–478 (1980).
  13. T. V. Teperik, V. Popov, and F. García de Abajo, “Void plamons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71(8), 085408 (2005).
  14. G. Lerosey, D. F. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).
  15. D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).
  16. S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001).
    [PubMed]
  17. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
  18. I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
  19. D. E. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
  20. P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
    [PubMed]
  21. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
    [PubMed]
  22. P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroscopic gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).
  23. A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Language 12(5), 1303–1311 (1996).
  24. P. Wagner, M. Hegner, H.-J. Guentherodt, and G. Semenza, “Formation and in situ modification of monolayers chemisorbed on ultraflat template stripped gold surface,” Language 11(10), 3867–3875 (1995).
  25. D. W. Mosley, B. Y. Chow, and J. M. Jacobson, “Solid-state bonding technique for template-stripped ultraflat gold substrates,” Langmuir 22(6), 2437–2440 (2006).
    [PubMed]
  26. J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).
  27. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).

2010 (2)

D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

2009 (2)

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[PubMed]

G. Lerosey, D. F. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).

2008 (1)

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).

2007 (2)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

D. E. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

2006 (3)

D. W. Mosley, B. Y. Chow, and J. M. Jacobson, “Solid-state bonding technique for template-stripped ultraflat gold substrates,” Langmuir 22(6), 2437–2440 (2006).
[PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express 14(5), 1965–1972 (2006).
[PubMed]

2005 (3)

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94(5), 057401 (2005).
[PubMed]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).

T. V. Teperik, V. Popov, and F. García de Abajo, “Void plamons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71(8), 085408 (2005).

2004 (1)

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).

2002 (4)

J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[PubMed]

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroscopic gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[PubMed]

2001 (1)

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001).
[PubMed]

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).

1999 (1)

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75(11), 1577 (1999).

1998 (1)

1997 (1)

1996 (1)

A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Language 12(5), 1303–1311 (1996).

1995 (1)

P. Wagner, M. Hegner, H.-J. Guentherodt, and G. Semenza, “Formation and in situ modification of monolayers chemisorbed on ultraflat template stripped gold surface,” Language 11(10), 3867–3875 (1995).

1980 (1)

K. Ohtaka, H. Miyazaki, and A. Lucas, “Collective modes of void-surface coupled system,” Phys. Rev. B 21(2), 467–478 (1980).

1975 (1)

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).

Abdelsalam, M.

Altewischer, E.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[PubMed]

Atwater, H. A.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).

Aussenegg, F. R.

Ballester, D.

D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).

Bartal, G.

G. Lerosey, D. F. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).

Bartlett, P. N.

T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express 14(5), 1965–1972 (2006).
[PubMed]

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroscopic gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001).
[PubMed]

Baumberg, J. J.

T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express 14(5), 1965–1972 (2006).
[PubMed]

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroscopic gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001).
[PubMed]

Birkin, P. R.

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroscopic gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001).
[PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).

Chan, W. C.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).

Chang, D. E.

D. E. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

Chow, B. Y.

D. W. Mosley, B. Y. Chow, and J. M. Jacobson, “Solid-state bonding technique for template-stripped ultraflat gold substrates,” Langmuir 22(6), 2437–2440 (2006).
[PubMed]

Clark, K. A.

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[PubMed]

Coyle, S.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001).
[PubMed]

Davis, C. C.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94(5), 057401 (2005).
[PubMed]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

Dimitrov, A. S.

A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Language 12(5), 1303–1311 (1996).

Du, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

Elliott, J.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94(5), 057401 (2005).
[PubMed]

Fischer, H.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).

Gan, D.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).

García de Abajo, F.

T. V. Teperik, V. Popov, and F. García de Abajo, “Void plamons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71(8), 085408 (2005).

García de Abajo, F. J.

Genick, C. C.

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[PubMed]

Ghanem, M. A.

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroscopic gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001).
[PubMed]

Gooding, J. J.

J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).

Grudzinski, W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).

Gryczynski, I.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).

Gryczynski, Z.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).

Guentherodt, H.-J.

P. Wagner, M. Hegner, H.-J. Guentherodt, and G. Semenza, “Formation and in situ modification of monolayers chemisorbed on ultraflat template stripped gold surface,” Language 11(10), 3867–3875 (1995).

H’Dhili, F.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).

Hecker, N. E.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75(11), 1577 (1999).

Hegner, M.

P. Wagner, M. Hegner, H.-J. Guentherodt, and G. Semenza, “Formation and in situ modification of monolayers chemisorbed on ultraflat template stripped gold surface,” Language 11(10), 3867–3875 (1995).

Hemmer, P.

D. E. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

Höpfel, R. A.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75(11), 1577 (1999).

Jacobson, J. M.

D. W. Mosley, B. Y. Chow, and J. M. Jacobson, “Solid-state bonding technique for template-stripped ultraflat gold substrates,” Langmuir 22(6), 2437–2440 (2006).
[PubMed]

Jiang, W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).

Kawata, S.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).

Kelf, T. A.

Kim, M. S.

D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).

Kobayashi, T.

Krenn, J. R.

Lakowicz, J. R.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

Leitner, A.

Lerosey, G.

G. Lerosey, D. F. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).

Lesuffleur, A.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[PubMed]

Losic, D.

J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).

Lucas, A.

K. Ohtaka, H. Miyazaki, and A. Lucas, “Collective modes of void-surface coupled system,” Phys. Rev. B 21(2), 467–478 (1980).

Lukin, M.

D. E. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

Lukin, M. D.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

Luo, X.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).

Maier, T.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75(11), 1577 (1999).

Malicka, J.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).

Matheu, P.

G. Lerosey, D. F. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).

Mazurkiewicz, J.

J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).

Mearns, F. J.

J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).

Mills, D. L.

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).

Miyazaki, H.

K. Ohtaka, H. Miyazaki, and A. Lucas, “Collective modes of void-surface coupled system,” Phys. Rev. B 21(2), 467–478 (1980).

Morimoto, A.

Mosley, D. W.

D. W. Mosley, B. Y. Chow, and J. M. Jacobson, “Solid-state bonding technique for template-stripped ultraflat gold substrates,” Langmuir 22(6), 2437–2440 (2006).
[PubMed]

Nagayama, K.

A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Language 12(5), 1303–1311 (1996).

Nagpal, P.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[PubMed]

Netti, M. C.

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroscopic gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001).
[PubMed]

Norris, D. J.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[PubMed]

Oh, S. H.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[PubMed]

Ohtaka, K.

K. Ohtaka, H. Miyazaki, and A. Lucas, “Collective modes of void-surface coupled system,” Phys. Rev. B 21(2), 467–478 (1980).

Okamoto, T.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).

Oldenburg, S. J.

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[PubMed]

Pile, D. F.

G. Lerosey, D. F. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).

Popov, V.

T. V. Teperik, V. Popov, and F. García de Abajo, “Void plamons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71(8), 085408 (2005).

Popov, V. V.

Quinten, M.

Rogers, C. T.

J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).

Sawaki, N.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75(11), 1577 (1999).

Schultz, D. A.

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[PubMed]

Semenza, G.

P. Wagner, M. Hegner, H.-J. Guentherodt, and G. Semenza, “Formation and in situ modification of monolayers chemisorbed on ultraflat template stripped gold surface,” Language 11(10), 3867–3875 (1995).

Shapter, J. G.

J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).

Smolyaninov, I. I.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94(5), 057401 (2005).
[PubMed]

Sørensen, A.

D. E. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

Strasser, G.

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75(11), 1577 (1999).

Sugawara, Y.

Takahara, J.

Taki, H.

Tame, M. S.

D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).

Teperik, T. V.

van Exter, M. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

Waclawik, E. R.

J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).

Wagner, P.

P. Wagner, M. Hegner, H.-J. Guentherodt, and G. Semenza, “Formation and in situ modification of monolayers chemisorbed on ultraflat template stripped gold surface,” Language 11(10), 3867–3875 (1995).

Wang, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).

Weeks, L.

J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).

Whittaker, D. M.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001).
[PubMed]

Woerdman, J. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[PubMed]

Xu, T.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).

Yamagishi, S.

Zayats, A. V.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94(5), 057401 (2005).
[PubMed]

Zhang, X.

G. Lerosey, D. F. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).

Zhao, Y.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).

Anal. Biochem. (1)

S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002).
[PubMed]

Appl. Phys. Lett. (3)

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).

N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75(11), 1577 (1999).

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).

Chem. Mater. (1)

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroscopic gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).

J. Phys. Chem. B (1)

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).

J. Vac. Sci. Technol. B (1)

J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).

Langmuir (1)

D. W. Mosley, B. Y. Chow, and J. M. Jacobson, “Solid-state bonding technique for template-stripped ultraflat gold substrates,” Langmuir 22(6), 2437–2440 (2006).
[PubMed]

Language (2)

A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Language 12(5), 1303–1311 (1996).

P. Wagner, M. Hegner, H.-J. Guentherodt, and G. Semenza, “Formation and in situ modification of monolayers chemisorbed on ultraflat template stripped gold surface,” Language 11(10), 3867–3875 (1995).

Nano Lett. (2)

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

G. Lerosey, D. F. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).

Nat. Phys. (1)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).

Phys. Rev. B (5)

K. Ohtaka, H. Miyazaki, and A. Lucas, “Collective modes of void-surface coupled system,” Phys. Rev. B 21(2), 467–478 (1980).

T. V. Teperik, V. Popov, and F. García de Abajo, “Void plamons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71(8), 085408 (2005).

D. E. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).

Phys. Rev. Lett. (2)

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94(5), 057401 (2005).
[PubMed]

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001).
[PubMed]

Science (1)

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cryogenic stripping approach to fabricating a nano-void system. 1. Cleaving the mica film to expose the atomically-smooth (110) plane; 2. Deposition of 10-nm Au film; 3. Treating the Au surface with 3- aminopropyltrimethloxisilane (APTMS) to improve wettability; 4. Deposition of a mono-layer of void template; 5. Electro-deposition of Au to encapsulate the nano-voids; 6. Nano-void passivated Au substrate. The final product is flipped over, and the mica strip to reveal the atomically smooth Au surface.

Fig. 2
Fig. 2

FE-SEM images of the thin metal slab. (a), (b) A typical FE-SEM image of a freestanding metal slab bearing embedded nano-voids. (c) “Close-up” view of the metal slab, showing the embedded 100-nm spherical nano-voids. (d) A typical FE-SEM cross-sectional image of N2-stripped Au surface embedded with spherical nano-voids. (e) FE-SEM cross-sectional image of N2-stripped Au surface embedded with oblate nano-voids. Note that samples shown in (d) and (e) are prepared by attaching the metal films on a solid substrate via epoxy glue. (f) FE-SEM cross-sectional image of nano-void passivated metal film obtained with mechanical stripping and no cryogenic treatment, showing rough Au surface. Images were taken with JEOL FE-SEM system in SEI mode under 9 × 10−5 Pa at 12 KV.

Fig. 3
Fig. 3

A typical 3 µm × 3 µm AFM surface mappings of stripped Au substrates containing nano-voids. (a) Cryogenically-stripped sample with no mica residue. RMS roughness = 0.55 nm. (b) Mechanically stripped sample. Mica shards are clearly visible. RMS roughness = 0.75 nm. (c) Scanning Tunneling Microscopy (STM) image of cryogenically-stripped sample. RMS roughness = 0.45 nm.

Fig. 4
Fig. 4

Angular reflectance profiles for void system with hexagonally-packed 400-nm nano-voids. (a) Different sign conventions used in Eq. (1) and (2). Hexagonally-packed polystyrene nano-particles deposited on I-Au-F, along with the near-field images (the right-most images) of a single nano-void (400 nm) buried 10 nm underneath the Au surface. (b) and (c) show the amplitudes of the p-polarized wave component of | d E μ r ( s ) ( k | | , k o _ | | ) ± in the kx-ky plane calculated at λ0 = 532 nm in the positive x-directions with an incident angle of 74 °, and for a = 100 nm and 30 nm respectively, with δ fixed at 1.5 nm. (d) - (g) show theoretical p-polarized reflectivity as a function of k 0 _ | | calculated through Eq. (2) for a = ∞, 100, 30, and 5 nm, respectively. Dielectric constant of Au is derived from the experimental data obtained by Johnson and Christy (Phys. Rev. B 6(12), 4370 (1972)).

Fig. 5
Fig. 5

AFM images of four different MSWNV sample groups. (a) Roughened metal surface by Au sputtering. (b) Autocorrelation curves.

Fig. 6
Fig. 6

P-polarized angular reflectance measurement. (a) Setup for the reflectance measurement. (b) A circular area containing embedded nano-void assembly appears brownish under the microscope as well as to the naked eye. Hexagonal packing near the edge of the nano-void template assembly.

Fig. 7
Fig. 7

Experimental co-polarized angular reflectance spectra derived the MSWNV as well as the electro-deposited samples along the Γ-K and Γ-M directions. Note that k o _ | | can be related to the incident angle, θ by k o _ | | = ( 2 π λ ) cos θ . Each data point is an average of up to 3 measurements.

Tables (1)

Tables Icon

Table 1 Fitted values of the correlation-length ai for each sample group

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E t ( s ) ± = d 2 k | | ( α ( k | | , k o _ | | + , E o p , 0 ) ± | e p ( k | | ) ± + β ( k | | , k o _ | | + , E o p , 0 ) ± | e s ( k | | ) ± ) + d 2 k | | ( α ( k | | , k o _ | | + , E o p , 0 ) ± | e p ( k | | ) ± + β ( k | | , k o _ | | + , E o p , 0 ) ± | e s ( k | | ) ± ) .
j ( k 2 , k 1 ± , E p , E s ) ± = n , m ( k 2 , k 1 ) f p p / s ( k 2 | k 1 ± ) ± E p +                                               n , m ( k 2 , k 1 ) f s p / s ( k 2 | k 1 ± ) ± E s +                                               d 2 k ( n , m ( k 2 , k ) n , m ( k , k 1 ) ) ( f p p / s ( k 2 | k ) ± f p p ( k | k 1 + ) E p +                                               f s p / s ( k 2 | k ) ± f p s ( k | k 1 + ) E p ) + ...                                               d 2 k ( n , m ( k 2 , k ) n , m ( k , k 1 ) ) ( f p p / s ( k 2 | k ) ± f s p ( k | k 1 + ) E s +                                               f s p / s ( k 2 | k ) ± f s s ( k | k 1 + ) E s ) + ....
n , m ( k | | , k o ) = δ ( [ Δ k a ^ ] [ a ^ a ] + [ Δ k a ^ | | ] [ a ^ | | a ] 2 π h ) δ ( [ Δ k | b | ] a ^ | | 2 π l ) .
E t ( s ) ± = d 2 k | | ( α ( k | | , k o _ | | + , E o p , 0 ) ± | e p ( k | | ) ± + β ( k | | , k o _ | | + , E o p , 0 ) ± | e s ( k | | ) ± ) +              d 2 k | | ( α ( k | | , k o _ | | + , E o p , 0 ) ± | e p ( k | | ) ± + β ( k | | , k o _ | | + , E o p , 0 ) ± | e s ( k | | ) ± ) +              d 2 k | | [ k ' | | α ( k | | , k ' | | , e p ( k ' | | ) | d E r ( s ) ( k ' | | , k o _ | | ) , e s ( k ' | | ) | d E r ( s ) ( k ' | | , k o _ | | ) ) ± | e p ( k | | ) ± +             k ' | | β ( k | | , k ' | | , e p ( k ' | | ) | d E r ( s ) ( k ' | | , k o _ | | ) , e s ( k ' | | ) | d E r ( s ) ( k ' | | , k o _ | | ) ) ± | e s ( k | | ) ± +             k ' | | α ( k | | , k ' | | , e p ( k ' | | ) | d E r ( s ) ( k ' | | , k o _ | | ) , e s ( k ' | | ) | d E r ( s ) ( k ' | | , k o _ | | ) ) ± | e p ( k | | ) ± +             k | | β ( k | | , k ' | | , e p ( k ' | | ) | d E r ( s ) ( k ' | | , k o _ | | ) , e s ( k ' | | ) | d E r ( s ) ( k ' | | , k o _ | | ) ) ± | e s ( k | | ) ± ] + ....
d E μ r ( s ) ( k | | , k o _ | | ) ± = d 2 k | | ω 2 16 π 3 c 2 [ ε ( ω ) 1 ] ξ ^ ( k | | k o _ | | ) v d z ' [ d μ v ( k | | ω | z ± z ' ) δ ( z ' )                                                                                                E v ( 0 ) ( k | | ( 0 ) ω | z ' ) e μ ( k | | ) ± ] .
ξ ^ ( x ) ξ ( x ' ) ξ ^ ( x ) 2 = ( ρ 0 + i > 0 ρ i e | x x ' | 2 / a i 2 ) .
ξ ^ ( k ) ξ ( k ' ) = δ 2 ( ρ 0 + i > 0 ρ i e a i 2 4 | k k ' | 2 ) .

Metrics