Abstract

A continuous-wave all-polarization maintaining ytterbium-doped fiber master oscillator power amplifier, with a tuning range of 70nm addressable at tuning rates of up to 20nm/ms, is described. Up to 10W of linearly polarized output was generated with an amplified spontaneous emission content of less than 0.2% throughout the tuning range.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [CrossRef]
  2. M. Hildebrandt, M. Frede, and D. Kracht, “Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power,” Opt. Lett. 32(16), 2345–2347 (2007).
    [CrossRef] [PubMed]
  3. A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
    [CrossRef]
  4. R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80(14), 5334–5341 (2008).
    [CrossRef] [PubMed]
  5. M. E. Klein, P. Gross, K.-J. Boller, M. Auerbach, P. Wessels, and C. Fallnich, “Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser,” Opt. Lett. 28(11), 920–922 (2003).
    [CrossRef] [PubMed]
  6. B. Adhimoolam, M. E. Klein, I. D. Lindsay, P. Gros, C. J. Lee, and K.-J. Boller, “Widely and rapidly tunable semiconductor master-oscillator fiber amplifier around 1080 nm,” IEEE Photon. Technol. Lett. 18(24), 2683–2685 (2006).
    [CrossRef]
  7. S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express 18(15), 15820–15831 (2010).
    [CrossRef] [PubMed]
  8. M. Auerbach, P. Adel, D. Wandt, C. Fallnich, S. Unger, S. Jetschke, and H. Mueller, “10 W widely tunable narrow linewidth double-clad fiber ring laser,” Opt. Express 10(2), 139–144 (2002).
    [PubMed]
  9. P. Weßels, M. Auerbach, and C. Fallnich, “Narrow-linewidth master oscillator fiber power amplifier system with very low amplified spontaneous emission,” Opt. Commun. 205(1-3), 215–219 (2002).
    [CrossRef]
  10. K. Sumimura, H. Yoshida, H. Okada, H. Fujita, M. Nakatsuka, H. Sawada, and M. Yoshida, “Environmentally stable ytterbium-doped fiber pulse laser composed of all-polarization-maintaining fiber system with a broad tuning range,” Jpn. J. Appl. Phys. 45(No. 8A), 6317–6319 (2006).
    [CrossRef]
  11. S. Wada, K. Akagawa, and H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett. 21(10), 731–733 (1996).
    [CrossRef] [PubMed]
  12. V. Kodach, D. Faber, and T. Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
    [CrossRef]
  13. M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photon. Technol. Lett. 6(5), 591–593 (1994).
    [CrossRef]
  14. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [CrossRef]

2010 (1)

2008 (2)

R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80(14), 5334–5341 (2008).
[CrossRef] [PubMed]

V. Kodach, D. Faber, and T. Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
[CrossRef]

2007 (2)

M. Hildebrandt, M. Frede, and D. Kracht, “Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power,” Opt. Lett. 32(16), 2345–2347 (2007).
[CrossRef] [PubMed]

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

2006 (2)

B. Adhimoolam, M. E. Klein, I. D. Lindsay, P. Gros, C. J. Lee, and K.-J. Boller, “Widely and rapidly tunable semiconductor master-oscillator fiber amplifier around 1080 nm,” IEEE Photon. Technol. Lett. 18(24), 2683–2685 (2006).
[CrossRef]

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, M. Nakatsuka, H. Sawada, and M. Yoshida, “Environmentally stable ytterbium-doped fiber pulse laser composed of all-polarization-maintaining fiber system with a broad tuning range,” Jpn. J. Appl. Phys. 45(No. 8A), 6317–6319 (2006).
[CrossRef]

2003 (1)

2002 (2)

M. Auerbach, P. Adel, D. Wandt, C. Fallnich, S. Unger, S. Jetschke, and H. Mueller, “10 W widely tunable narrow linewidth double-clad fiber ring laser,” Opt. Express 10(2), 139–144 (2002).
[PubMed]

P. Weßels, M. Auerbach, and C. Fallnich, “Narrow-linewidth master oscillator fiber power amplifier system with very low amplified spontaneous emission,” Opt. Commun. 205(1-3), 215–219 (2002).
[CrossRef]

2000 (1)

1996 (1)

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

1994 (1)

M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photon. Technol. Lett. 6(5), 591–593 (1994).
[CrossRef]

Adel, P.

Adhimoolam, B.

B. Adhimoolam, M. E. Klein, I. D. Lindsay, P. Gros, C. J. Lee, and K.-J. Boller, “Widely and rapidly tunable semiconductor master-oscillator fiber amplifier around 1080 nm,” IEEE Photon. Technol. Lett. 18(24), 2683–2685 (2006).
[CrossRef]

Akagawa, K.

Andersen, P. E.

Auerbach, M.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Bartlome, R.

R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80(14), 5334–5341 (2008).
[CrossRef] [PubMed]

Biedermann, B. R.

Boller, K.-J.

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

B. Adhimoolam, M. E. Klein, I. D. Lindsay, P. Gros, C. J. Lee, and K.-J. Boller, “Widely and rapidly tunable semiconductor master-oscillator fiber amplifier around 1080 nm,” IEEE Photon. Technol. Lett. 18(24), 2683–2685 (2006).
[CrossRef]

M. E. Klein, P. Gross, K.-J. Boller, M. Auerbach, P. Wessels, and C. Fallnich, “Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser,” Opt. Lett. 28(11), 920–922 (2003).
[CrossRef] [PubMed]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Cristescu, S. M.

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Erbert, G.

Esman, R. D.

M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photon. Technol. Lett. 6(5), 591–593 (1994).
[CrossRef]

Faber, D.

V. Kodach, D. Faber, and T. Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
[CrossRef]

Fallnich, C.

Frankel, M. Y.

M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photon. Technol. Lett. 6(5), 591–593 (1994).
[CrossRef]

Frede, M.

Fujita, H.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, M. Nakatsuka, H. Sawada, and M. Yoshida, “Environmentally stable ytterbium-doped fiber pulse laser composed of all-polarization-maintaining fiber system with a broad tuning range,” Jpn. J. Appl. Phys. 45(No. 8A), 6317–6319 (2006).
[CrossRef]

Goldberg, L.

Gros, P.

B. Adhimoolam, M. E. Klein, I. D. Lindsay, P. Gros, C. J. Lee, and K.-J. Boller, “Widely and rapidly tunable semiconductor master-oscillator fiber amplifier around 1080 nm,” IEEE Photon. Technol. Lett. 18(24), 2683–2685 (2006).
[CrossRef]

Groß, P.

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

Gross, P.

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Hansen, K. P.

Harren, F. J. M.

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

Hasler, K.-H.

Hildebrandt, M.

Hsu, K.

Huber, R.

Jensen, O. B.

Jetschke, S.

Klein, M. E.

B. Adhimoolam, M. E. Klein, I. D. Lindsay, P. Gros, C. J. Lee, and K.-J. Boller, “Widely and rapidly tunable semiconductor master-oscillator fiber amplifier around 1080 nm,” IEEE Photon. Technol. Lett. 18(24), 2683–2685 (2006).
[CrossRef]

M. E. Klein, P. Gross, K.-J. Boller, M. Auerbach, P. Wessels, and C. Fallnich, “Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser,” Opt. Lett. 28(11), 920–922 (2003).
[CrossRef] [PubMed]

Klein, T.

Kliner, D. A. V.

Kodach, V.

V. Kodach, D. Faber, and T. Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
[CrossRef]

Koplow, J. P.

Kosterev, A. A.

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

Kracht, D.

Lee, C. J.

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

B. Adhimoolam, M. E. Klein, I. D. Lindsay, P. Gros, C. J. Lee, and K.-J. Boller, “Widely and rapidly tunable semiconductor master-oscillator fiber amplifier around 1080 nm,” IEEE Photon. Technol. Lett. 18(24), 2683–2685 (2006).
[CrossRef]

Leeuwen, T.

V. Kodach, D. Faber, and T. Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
[CrossRef]

Lindsay, I. D.

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

B. Adhimoolam, M. E. Klein, I. D. Lindsay, P. Gros, C. J. Lee, and K.-J. Boller, “Widely and rapidly tunable semiconductor master-oscillator fiber amplifier around 1080 nm,” IEEE Photon. Technol. Lett. 18(24), 2683–2685 (2006).
[CrossRef]

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Marschall, S.

Mueller, H.

Nakatsuka, M.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, M. Nakatsuka, H. Sawada, and M. Yoshida, “Environmentally stable ytterbium-doped fiber pulse laser composed of all-polarization-maintaining fiber system with a broad tuning range,” Jpn. J. Appl. Phys. 45(No. 8A), 6317–6319 (2006).
[CrossRef]

Ngai, A. K. Y.

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

Okada, H.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, M. Nakatsuka, H. Sawada, and M. Yoshida, “Environmentally stable ytterbium-doped fiber pulse laser composed of all-polarization-maintaining fiber system with a broad tuning range,” Jpn. J. Appl. Phys. 45(No. 8A), 6317–6319 (2006).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Pedersen, C.

Persijn, S. T.

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

Rey, J. M.

R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80(14), 5334–5341 (2008).
[CrossRef] [PubMed]

Sawada, H.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, M. Nakatsuka, H. Sawada, and M. Yoshida, “Environmentally stable ytterbium-doped fiber pulse laser composed of all-polarization-maintaining fiber system with a broad tuning range,” Jpn. J. Appl. Phys. 45(No. 8A), 6317–6319 (2006).
[CrossRef]

Sigrist, M. W.

R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80(14), 5334–5341 (2008).
[CrossRef] [PubMed]

Sumimura, K.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, M. Nakatsuka, H. Sawada, and M. Yoshida, “Environmentally stable ytterbium-doped fiber pulse laser composed of all-polarization-maintaining fiber system with a broad tuning range,” Jpn. J. Appl. Phys. 45(No. 8A), 6317–6319 (2006).
[CrossRef]

Sumpf, B.

Tashiro, H.

Tittel, F. K.

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Unger, S.

Wada, S.

Wandt, D.

Weller, J. F.

M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photon. Technol. Lett. 6(5), 591–593 (1994).
[CrossRef]

Wessels, P.

Weßels, P.

P. Weßels, M. Auerbach, and C. Fallnich, “Narrow-linewidth master oscillator fiber power amplifier system with very low amplified spontaneous emission,” Opt. Commun. 205(1-3), 215–219 (2002).
[CrossRef]

Wieser, W.

Yoshida, H.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, M. Nakatsuka, H. Sawada, and M. Yoshida, “Environmentally stable ytterbium-doped fiber pulse laser composed of all-polarization-maintaining fiber system with a broad tuning range,” Jpn. J. Appl. Phys. 45(No. 8A), 6317–6319 (2006).
[CrossRef]

Yoshida, M.

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, M. Nakatsuka, H. Sawada, and M. Yoshida, “Environmentally stable ytterbium-doped fiber pulse laser composed of all-polarization-maintaining fiber system with a broad tuning range,” Jpn. J. Appl. Phys. 45(No. 8A), 6317–6319 (2006).
[CrossRef]

Anal. Chem. (1)

R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80(14), 5334–5341 (2008).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous-wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. Adhimoolam, M. E. Klein, I. D. Lindsay, P. Gros, C. J. Lee, and K.-J. Boller, “Widely and rapidly tunable semiconductor master-oscillator fiber amplifier around 1080 nm,” IEEE Photon. Technol. Lett. 18(24), 2683–2685 (2006).
[CrossRef]

M. Y. Frankel, R. D. Esman, and J. F. Weller, “Rapid continuous tuning of a single-polarization fiber ring laser,” IEEE Photon. Technol. Lett. 6(5), 591–593 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Sumimura, H. Yoshida, H. Okada, H. Fujita, M. Nakatsuka, H. Sawada, and M. Yoshida, “Environmentally stable ytterbium-doped fiber pulse laser composed of all-polarization-maintaining fiber system with a broad tuning range,” Jpn. J. Appl. Phys. 45(No. 8A), 6317–6319 (2006).
[CrossRef]

Opt. Commun. (2)

V. Kodach, D. Faber, and T. Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
[CrossRef]

P. Weßels, M. Auerbach, and C. Fallnich, “Narrow-linewidth master oscillator fiber power amplifier system with very low amplified spontaneous emission,” Opt. Commun. 205(1-3), 215–219 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the master oscillator. Arrow heads indicate the propagation direction. WP: half-wave plates, PB: polarizing beam splitter cubes, FR: Faraday rotator, DM: dichroic mirrors, AOTF: acousto-optic tunable filter.

Fig. 2
Fig. 2

(a) Master oscillator (MO) output spectra for representative laser wavelengths of 1030, 1070 and 1110nm and (b) total output power (squares) and ASE content (triangles) across the 1030-1110nm tuning range. Dashed lines represent direct output and solid lines represent ASE-free operation in both (a) and (b). ASE content data for ASE-free operation represents an upper limit determined by the noise floor of the optical spectrum analyzer measurement.

Fig. 3
Fig. 3

(a) Averaged spectrum (0.5nm resolution) over multiple wavelength sweeps. (b) Simultaneously acquired fringe pattern from BK7 monitor etalon as the laser wavelength is swept. (c) Fixed-wavelength spectrum (0.024nm resolution) at 1069.90nm. (d) Instantaneous laser spectra during swept operation recorded with fixed monochromator wavelengths (0.1nm resolution).

Fig. 4
Fig. 4

Schematic diagram of the power amplifier. Arrow heads indicate the propagation direction. WP: half-wave plate, FI: Faraday isolator.

Fig. 5
Fig. 5

MOPA (a) output spectra at representative wavelengths of 1030, 1070 and 1110nm, and (b) variation of output power (squares) and ASE content (triangles) across the 1035-1105nm tuning range. Dashed lines represent direct output and solid lines represent ASE-free operation in both (a) and (b).

Fig. 6
Fig. 6

Fiber amplifier gain saturation measurements for representative wavelengths of 1030nm (orange triangles), 1070nm (green circles) and 1110nm (purple squares). (a) Output power levels, (b) Output ASE content.

Metrics