Abstract

We present both experimental measurements and simulations for a simple fiber-optical liquid refractive index sensor, made using only commercially available components and without advanced postprocessing of the fiber. Despite the simplicity, we obtain the highest sensitivity experimentally demonstrated to date for aqueous solutions (refractive index around 1.33), which is relevant for extensions to biosensing. The sensor is based on measuring the spectral shift of peaks arising from four-wave mixing (FWM), when filling the holes of a microstructured fiber with different liquid samples and propagating nanosecond pulses through the silica-core of the fiber. To the best of our knowledge, this is also the first experiment where a liquid is filled into the holes of a solid-core microstructured fiber to control the phase-match conditions for FWM.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7, 797–859 (2007).
    [CrossRef]
  2. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
    [CrossRef] [PubMed]
  3. P. E. Hoiby, L. B. Nielsen, J. B. Jensen, T. P. Hansen, A. Bjarklev, and L. H. Pedersen, “Molecular immobilization and detection in a photonic crystal fiber,” (SPIE, 2004), vol. 5317, pp. 220–223. http://dx.doi.org/10.1117/12.528891 .
  4. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13, 5883–5889 (2005).
    [CrossRef] [PubMed]
  5. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006).
    [CrossRef] [PubMed]
  6. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001).
    [CrossRef]
  7. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).
    [CrossRef] [PubMed]
  8. M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23, 1692–1699 (2006).
    [CrossRef]
  9. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16, 20834–20847 (2008).
    [CrossRef] [PubMed]
  10. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003).
    [CrossRef]
  11. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
    [CrossRef]
  12. S. O. Konorov, A. B. Fedotov, A. M. Zheltikov, and R. B. Miles, “Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fibers,” J. Opt. Soc. Am. B 22, 2049–2053 (2005).
    [CrossRef]
  13. P. D. Rasmussen, F. H. Bennet, D. N. Neshev, A. A. Sukhorukov, C. R. Rosberg, W. Krolikowski, O. Bang, and Y. S. Kivshar, “Observation of two-dimensional nonlocal gap solitons,” Opt. Lett. 34, 295–297 (2009).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics 4th ed. (Academic Press, 2007).
  15. V. Tombelaine, A. Labruyère, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009).
    [CrossRef] [PubMed]
  16. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett. 28, 1879–1881 (2003).
    [CrossRef] [PubMed]
  17. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  18. J. Lægsgaard, A. Bjarklev, and S. E. B. Libori, “Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation,” J. Opt. Soc. Am. B 20, 443–448 (2003).
    [CrossRef]
  19. D. N. Nikogosyan, Properties of optical and laser-related materials: a handbook (John Wiley & Sons Ltd., West Sussex, England, 1997).
  20. J. E. Bertie and Z. Lan, “The refractive index of colorless liquids in the visible and infrared: Contributions from the absorption of infrared and ultraviolet radiation and the electronic molar polarizability below 20 500 cm−1,” J. Chem. Phys. 103, 10152–10161 (1995). http://link.aip.org/link/?JCP/103/10152/1 .
    [CrossRef]
  21. J. E. Bertie and Z. Lan, “Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25°C between 15,000 and 1 cm−1,” Appl. Spectrosc. 50, 1047–1057 (1996). http://as.osa.org/abstract.cfm?URI=as-50-8-1047 .
    [CrossRef]
  22. The International Association for the Properties of Water and Steam, “Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure,” (1997). http://www.iapws.org/relguide/rindex.pdf .
  23. J. E. Bertie, S. L. Zhang, H. H. Eysel, S. Baluja, and M. K. Ahmed, “Infrared intensities of liquids XI: Infrared refractive indices from 8000 to 2 cm−1, absolute integrated intensities, and dipole moment derivatives of methanol at 25°C,” Appl. Spectrosc. 47, 1100–1114 (1993).
    [CrossRef]
  24. S. E. Wood, S. Langer, and R. Battino, “Refractive index and dispersion of the benzene-methanol system,” J. Chem. Phys. 32, 1389–1393 (1960). http://link.aip.org/link/?JCP/32/1389/1 .
    [CrossRef]
  25. M. H. Frosz, “Dispersion-modulation by high material loss in microstructured polymer optical fibers,” Opt. Express 17, 17950–17962 (2009).
    [CrossRef] [PubMed]
  26. K. Okamoto, Fundamentals of Optical Waveguides 2nd ed. (Academic Press, 2006).
  27. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  28. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). http://link.aps.org/abstract/RMP/v78/p1135 .
    [CrossRef]
  29. J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fibre Optics Overview (Cambridge University Press, 2010), chap. 3, Supercontinuum generation in optical fibers. ISBN 978-0-521-51480-4.
  30. J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
    [CrossRef] [PubMed]
  31. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
    [CrossRef]
  32. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16, 21076–21086 (2008).
    [CrossRef] [PubMed]
  33. P. D. Rasmussen, J. Lægsgaard, and O. Bang, “Degenerate four wave mixing in solid core photonic bandgap fibers,” Opt. Express 16, 4059–4068 (2008).
    [CrossRef] [PubMed]
  34. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007).
    [CrossRef]
  35. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
    [CrossRef] [PubMed]
  36. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [CrossRef]
  37. H. R. Zelsmann, “Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region,” J. Mol. Struct. 350, 95–114 (1995).
    [CrossRef]
  38. J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84, 3130–3134 (1980).
    [CrossRef]
  39. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33, 563–565 (2008). http://ol.osa.org/abstract.cfm?URI=ol-33-6-563 .
    [CrossRef] [PubMed]
  40. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34, 322–324 (2009).
    [CrossRef] [PubMed]
  41. B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17, 16306–16321 (2009).
    [CrossRef] [PubMed]
  42. W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sensors J. 10, 1192–1199 (2010).
    [CrossRef]

2010

J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fibre Optics Overview (Cambridge University Press, 2010), chap. 3, Supercontinuum generation in optical fibers. ISBN 978-0-521-51480-4.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sensors J. 10, 1192–1199 (2010).
[CrossRef]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2006

2005

2004

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[CrossRef]

2003

2002

2001

1997

D. N. Nikogosyan, Properties of optical and laser-related materials: a handbook (John Wiley & Sons Ltd., West Sussex, England, 1997).

1995

H. R. Zelsmann, “Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region,” J. Mol. Struct. 350, 95–114 (1995).
[CrossRef]

1993

1989

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

1980

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84, 3130–3134 (1980).
[CrossRef]

1965

Agger, C.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics 4th ed. (Academic Press, 2007).

Ahmed, M. K.

Baluja, S.

Bang, O.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sensors J. 10, 1192–1199 (2010).
[CrossRef]

P. D. Rasmussen, F. H. Bennet, D. N. Neshev, A. A. Sukhorukov, C. R. Rosberg, W. Krolikowski, O. Bang, and Y. S. Kivshar, “Observation of two-dimensional nonlocal gap solitons,” Opt. Lett. 34, 295–297 (2009).
[CrossRef] [PubMed]

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16, 20834–20847 (2008).
[CrossRef] [PubMed]

P. D. Rasmussen, J. Lægsgaard, and O. Bang, “Degenerate four wave mixing in solid core photonic bandgap fibers,” Opt. Express 16, 4059–4068 (2008).
[CrossRef] [PubMed]

M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16, 21076–21086 (2008).
[CrossRef] [PubMed]

M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23, 1692–1699 (2006).
[CrossRef]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13, 5883–5889 (2005).
[CrossRef] [PubMed]

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003).
[CrossRef]

Bartelt, H.

Bennet, F. H.

Bertie, J. E.

Bjarklev, A.

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Bosch, M. E.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7, 797–859 (2007).
[CrossRef]

Chau, A. H. L.

Coen, S.

Coker, A.

Couderc, V.

Dudley, J. M.

J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fibre Optics Overview (Cambridge University Press, 2010), chap. 3, Supercontinuum generation in optical fibers. ISBN 978-0-521-51480-4.

Dufva, M.

Eggleton, B. J.

Emiliyanov, G.

Eysel, H. H.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Fedotov, A. B.

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[CrossRef]

Fiorentino, M.

Folkenberg, J. R.

Frosz, M. H.

Hansen, K. P.

Harvey, J. D.

Heuck, M.

Hoiby, P. E.

Høiby, P. E.

Hult, J.

Jamier, R.

Jensen, J. B.

Joannopoulos, J. D.

Johnson, S. G.

Kivshar, Y. S.

Knight, J. C.

Kobelke, J.

Konorov, S. O.

Krolikowski, W.

Kuhlmey, B. T.

Kumar, P.

Labruyère, A.

Lægsgaard, J.

Leonhardt, R.

Leproux, P.

Libori, S. E. B.

Mahmoodian, S.

Malitson, I. H.

Mammone, J. F.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84, 3130–3134 (1980).
[CrossRef]

Miles, R. B.

Mortensen, N. A.

Moselund, P. M.

Neshev, D. N.

Nicol, M.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84, 3130–3134 (1980).
[CrossRef]

Nielsen, M. D.

Nikogosyan, D. N.

D. N. Nikogosyan, Properties of optical and laser-related materials: a handbook (John Wiley & Sons Ltd., West Sussex, England, 1997).

Nikolov, N. I.

Ojeda, C. B.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7, 797–859 (2007).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides 2nd ed. (Academic Press, 2006).

Ott, J. R.

Pedersen, L.

Pedersen, L. H.

Rasmussen, P. D.

Reichel, V.

Rindorf, L.

Rojas, F. S.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7, 797–859 (2007).
[CrossRef]

Rosberg, C. R.

Russell, P. St. J.

Sánchez, A. J. R.

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7, 797–859 (2007).
[CrossRef]

Schuster, K.

Sharma, S. K.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84, 3130–3134 (1980).
[CrossRef]

Sharping, J. E.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Sørensen, T.

Sukhorukov, A. A.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Thomsen, C. L.

Tombelaine, V.

Town, G. E.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sensors J. 10, 1192–1199 (2010).
[CrossRef]

Travers, J. C.

J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fibre Optics Overview (Cambridge University Press, 2010), chap. 3, Supercontinuum generation in optical fibers. ISBN 978-0-521-51480-4.

Wadsworth, W. J.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Windeler, R. S.

Wong, G. K. L.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Wu, D. K. C.

Yuan, W.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sensors J. 10, 1192–1199 (2010).
[CrossRef]

Zelsmann, H. R.

H. R. Zelsmann, “Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region,” J. Mol. Struct. 350, 95–114 (1995).
[CrossRef]

Zhang, S. L.

Zheltikov, A. M.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Appl. Spectrosc.

IEEE J. Quantum Electron.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

IEEE Sensors J.

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sensors J. 10, 1192–1199 (2010).
[CrossRef]

J. Lightwave Technol.

J. Mol. Struct.

H. R. Zelsmann, “Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region,” J. Mol. Struct. 350, 95–114 (1995).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. Chem.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84, 3130–3134 (1980).
[CrossRef]

Meas. Sci. Technol.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[CrossRef]

Opt. Express

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13, 5883–5889 (2005).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006).
[CrossRef] [PubMed]

J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
[CrossRef] [PubMed]

P. D. Rasmussen, J. Lægsgaard, and O. Bang, “Degenerate four wave mixing in solid core photonic bandgap fibers,” Opt. Express 16, 4059–4068 (2008).
[CrossRef] [PubMed]

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16, 20834–20847 (2008).
[CrossRef] [PubMed]

M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16, 21076–21086 (2008).
[CrossRef] [PubMed]

V. Tombelaine, A. Labruyère, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009).
[CrossRef] [PubMed]

B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17, 16306–16321 (2009).
[CrossRef] [PubMed]

M. H. Frosz, “Dispersion-modulation by high material loss in microstructured polymer optical fibers,” Opt. Express 17, 17950–17962 (2009).
[CrossRef] [PubMed]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Sensors

M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7, 797–859 (2007).
[CrossRef]

Other

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33, 563–565 (2008). http://ol.osa.org/abstract.cfm?URI=ol-33-6-563 .
[CrossRef] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics 4th ed. (Academic Press, 2007).

D. N. Nikogosyan, Properties of optical and laser-related materials: a handbook (John Wiley & Sons Ltd., West Sussex, England, 1997).

J. E. Bertie and Z. Lan, “The refractive index of colorless liquids in the visible and infrared: Contributions from the absorption of infrared and ultraviolet radiation and the electronic molar polarizability below 20 500 cm−1,” J. Chem. Phys. 103, 10152–10161 (1995). http://link.aip.org/link/?JCP/103/10152/1 .
[CrossRef]

J. E. Bertie and Z. Lan, “Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25°C between 15,000 and 1 cm−1,” Appl. Spectrosc. 50, 1047–1057 (1996). http://as.osa.org/abstract.cfm?URI=as-50-8-1047 .
[CrossRef]

The International Association for the Properties of Water and Steam, “Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure,” (1997). http://www.iapws.org/relguide/rindex.pdf .

S. E. Wood, S. Langer, and R. Battino, “Refractive index and dispersion of the benzene-methanol system,” J. Chem. Phys. 32, 1389–1393 (1960). http://link.aip.org/link/?JCP/32/1389/1 .
[CrossRef]

K. Okamoto, Fundamentals of Optical Waveguides 2nd ed. (Academic Press, 2006).

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). http://link.aps.org/abstract/RMP/v78/p1135 .
[CrossRef]

J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fibre Optics Overview (Cambridge University Press, 2010), chap. 3, Supercontinuum generation in optical fibers. ISBN 978-0-521-51480-4.

P. E. Hoiby, L. B. Nielsen, J. B. Jensen, T. P. Hansen, A. Bjarklev, and L. H. Pedersen, “Molecular immobilization and detection in a photonic crystal fiber,” (SPIE, 2004), vol. 5317, pp. 220–223. http://dx.doi.org/10.1117/12.528891 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Left: Microscope image showing the cross-section of the photonic crystal fiber used here. The distance between air-holes is Λ = 3.15 μm, and the relative hole diameter is d/Λ = 0.5. Right:Calculated dispersion profiles for the MOF-waveguide when the holes are either filled with air (blue, solid), water (green, dotted), or methanol (red, dashed). The horizontal black line indicates zero dispersion.

Fig. 2
Fig. 2

Left: Calculated propagation constant for the used MOF with either air (blue, solid), water (green, dotted), or methanol (red, dashed) in the holes. The dash-dotted vertical lines indicate (from left to right) the anti-Stokes, pump, and Stokes wavelength, respectively, for the case of water in the holes. Right: The calculated phase-mismatch κ, Eq. (1), with either air (blue, solid), water (green, dotted), or methanol (red, dashed) in the holes. The horizontal dash-dotted lines indicate the limits of the gain region, Eq. (2).

Fig. 3
Fig. 3

Sketch of the experimental setup, with three different configurations for the output end of the fiber. λ/2: half-wave plate, P: polarizer, M: mirror, BS: beam splitter, MO: 20x microscope objective, MM: multimode fiber, F: filters reflecting 98–99% at 1064 nm, Ando OSA: AQ6315 optical spectrum analyzer, Ocean Optics spectrometer: HR2000+.

Fig. 4
Fig. 4

Left: Simulation (blue, solid) and measurement (green, dotted) when using a 0.6 m long fiber without any liquid in the holes. The simulations are smoothed by convolution with a Gaussian function to ∼ 10 nm resolution. Right: Simulation (blue, solid) and measurement using either the ANDO OSA (green, dotted) or the Ocean Optics spectrometer (red, dashed) when using a 1.5 m long fiber with water in the holes. The simulations are smoothed by convolution to ∼ 2 nm resolution. Both simulated and measured spectra are vertically offset arbitrarily to qualitatively compare the simulations with the measurements. Note that two filters were used to attenuate near-infrared light (∼ 990–1140 nm) for measurements using the Ocean Optics spectrometer, to avoid saturation by the pump.

Fig. 5
Fig. 5

Left: Simulation (blue, solid) and measurement (green, dotted) when pumping a 1.5 m long fiber with methanol in the holes. The simulations are smoothed by convolution to ∼1 nm resolution. Measurements using low pump power are also shown (red, dashed) to identify spectral signatures originating from the pump laser itself without any significant nonlinear effects in the fiber. Note that the measured spectral power level using either high or low pump power is shown in a.u. and cannot be directly compared: in both cases the integration time and coupling into the spectrometer was adjusted to obtain higher signal-to-noise ratio without saturating the detector. Right: Comparison of simulations (dotted) and measurements (solid) using either water (blue) or methanol (green) in the holes of the fibre. All measurements for this figure were made using the Ocean Optics HR2000+, and two filters were used to attenuate light at ∼990–1140 nm to avoid saturation by the pump.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

κ = 2 β ( ω p ) β ( ω S ) β ( ω aS ) 2 γ P 0 ,
| κ | < 2 γ P 0 ,
n ( ν ˜ ) a 0 + a 2 ν ˜ 2 + a 4 ν ˜ 4 a 2 ν ˜ 2 a 4 ν ˜ 4 a 6 ν ˜ 6 a 8 ν ˜ 8 a 10 ν ˜ 10 a 12 ν ˜ 12 ,
n 2 ( ν ˜ ) b 0 + b 2 ν ˜ 2 + b 4 ν ˜ 4 + c 0 ν ˜ 0 2 ( ν ˜ 0 2 ν ˜ 2 ) ( ν ˜ 0 2 ν ˜ 2 ) 2 + ( ν ˜ Δ ν ˜ ) 2
n 2 = 1 + 0.6965325 λ 2 λ 2 ( 0.066093 ) 2 + 0.4083099 λ 2 λ 2 ( 0.11811001 ) 2 + 0.8968766 λ 2 λ 2 ( 9.896160 ) 2 ,
C ˜ z i { β ( ω ) β ( ω 0 ) β 1 ( ω 0 ) [ ω ω 0 ] } C ˜ ( z , ω ) + α ( ω ) 2 C ˜ ( z , ω ) = i γ ( ω ) [ 1 + ω ω 0 ω 0 ] { C ( z , t ) R ( T ) | C ( z , T T ) | 2 d T } ,
{ C ( z , t ) } = C ˜ ( z , ω ) = [ A eff ( ω ) A eff ( ω 0 ) ] 1 / 4 A ˜ ( z , ω ) ,
γ ( ω ) = n 2 n 0 ω 0 c n eff ( ω ) A eff ( ω ) A eff ( ω 0 ) ,
R ( t ) = ( 1 f R ) δ ( t ) + f R τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t / τ 2 ) sin ( t / τ 1 ) Θ ( t ) ,

Metrics