Abstract

We demonstrate second order optical nonlinearity in a silicon architecture through heterogeneous integration of single-crystalline gallium nitride (GaN) on silicon (100) substrates. By engineering GaN microrings for dual resonance around 1560 nm and 780 nm, we achieve efficient, tunable second harmonic generation at 780 nm. The χ2 nonlinear susceptibility is measured to be as high as 16 ± 7 pm/V. Because GaN has a wideband transparency window covering ultraviolet, visible and infrared wavelengths, our platform provides a viable route for the on-chip generation of optical wavelengths in both the far infrared and near-UV through a combination of χ2 enabled sum-/difference-frequency processes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
    [PubMed]
  2. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [PubMed]
  3. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).
  4. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
  5. J. L. O’Brien, “Optical quantum computing,” Science 318(5856), 1567–1570 (2007).
    [PubMed]
  6. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
  7. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
  8. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
    [PubMed]
  9. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [PubMed]
  10. S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
    [PubMed]
  11. M. Abe, H. Sato, I. Shoji, J. Suda, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Kondo, “Accurate measurement of quadratic nonlinear-optical coefficients of gallium nitride,” J. Opt. Soc. Am. B 27(10), 2026–2034 (2010).
  12. A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).
  13. X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electrooptic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).
  14. J. Miragliotta, D. K. Wickenden, T. J. Kistenmacher, and W. A. Bryden, “Linear- and nonlinear-optical properties of GaN thin films,” J. Opt. Soc. Am. B 10(8), 1447–1456 (1993).
  15. A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, “High electron mobility AlGaN/GaN heterostructure on (111) Si,” Appl. Phys. Lett. 76(6), 736–738 (2000).
  16. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).
  17. A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)
  18. W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett. 72(5), 599–601 (1998).
  19. J. W. Chung, J.-k. Lee, E. L. Piner, and T. Palacios, “Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs,” IEEE Electron Device Lett. 30(10), 1015–1017 (2009).
  20. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [PubMed]
  21. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
    [PubMed]
  22. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [PubMed]
  23. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [PubMed]
  24. K. Rivoire, Z. L. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97(4), 043103 (2010).
  25. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, CA, 2003), pp. xvii, 578 p.
  26. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25(8), 554–556 (2000).
  27. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. Quantum Electronics–Principles and Applications Series (Elsevier/Academic, Amsterdam 2007), p. xvi.
  28. D. G. Rabus, Integrated Ring Resonators: the Compendium, Springer Series in Optical Sciences (Springer, Berlin, 2007), p. xv.
  29. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
    [PubMed]
  30. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Second-harmonic generation in silicon nitride ring resonators,” arXiv:1010.6042v1, http://arxiv.org/abs/1010.6042

2010 (6)

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[PubMed]

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).

S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[PubMed]

K. Rivoire, Z. L. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97(4), 043103 (2010).

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010).
[PubMed]

M. Abe, H. Sato, I. Shoji, J. Suda, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Kondo, “Accurate measurement of quadratic nonlinear-optical coefficients of gallium nitride,” J. Opt. Soc. Am. B 27(10), 2026–2034 (2010).

2009 (1)

J. W. Chung, J.-k. Lee, E. L. Piner, and T. Palacios, “Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs,” IEEE Electron Device Lett. 30(10), 1015–1017 (2009).

2008 (1)

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

2007 (2)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).

J. L. O’Brien, “Optical quantum computing,” Science 318(5856), 1567–1570 (2007).
[PubMed]

2006 (3)

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[PubMed]

2004 (2)

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[PubMed]

2003 (1)

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).

2000 (3)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, “High electron mobility AlGaN/GaN heterostructure on (111) Si,” Appl. Phys. Lett. 76(6), 736–738 (2000).

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25(8), 554–556 (2000).

1999 (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[PubMed]

1998 (1)

W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett. 72(5), 599–601 (1998).

1997 (1)

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).

1995 (2)

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electrooptic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

1993 (1)

1989 (1)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).

Abe, M.

Absil, P. P.

Adibi, A.

Ambacher, O.

A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, “High electron mobility AlGaN/GaN heterostructure on (111) Si,” Appl. Phys. Lett. 76(6), 736–738 (2000).

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[PubMed]

Assefa, S.

S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[PubMed]

Atabaki, A. H.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

Baets, R.

Benisty, H.

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)

Bhardwaj, M.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).

Bienstman, P.

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

Bour, D. P.

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).

Bowers, J. E.

Brueck, S. R. J.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electrooptic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).

Bryden, W. A.

Chelkowski, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

Cheung, N. W.

W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett. 72(5), 599–601 (1998).

Cho, P. S.

Chowdhury, A.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).

Chung, J. W.

J. W. Chung, J.-k. Lee, E. L. Piner, and T. Palacios, “Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs,” IEEE Electron Device Lett. 30(10), 1015–1017 (2009).

Cohen, O.

Danzmann, K.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

David, A.

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).

DenBaars, S. P.

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[PubMed]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[PubMed]

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[PubMed]

Fang, A. W.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[PubMed]

Franzen, A.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

Fujii, T.

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)

Fürst, J. U.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[PubMed]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[PubMed]

Gossler, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).

Hage, B.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

Hatami, F.

K. Rivoire, Z. L. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97(4), 043103 (2010).

Hersee, S. D.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electrooptic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).

Ho, P. T.

Hryniewicz, J. V.

Joneckis, L. G.

Jones, R.

Kiesel, N.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[PubMed]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

Kistenmacher, T. J.

Kitaoka, Y.

Kondo, T.

Krischek, R.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

Lassen, M.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[PubMed]

Lastzka, N.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

Lee, J.-k.

J. W. Chung, J.-k. Lee, E. L. Piner, and T. Palacios, “Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs,” IEEE Electron Device Lett. 30(10), 1015–1017 (2009).

Leuchs, G.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[PubMed]

Lin, Z. L.

K. Rivoire, Z. L. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97(4), 043103 (2010).

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[PubMed]

Little, B. E.

Long, X. C.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electrooptic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

MacDonald, N. C.

A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, “High electron mobility AlGaN/GaN heterostructure on (111) Si,” Appl. Phys. Lett. 76(6), 736–738 (2000).

Marquardt, C.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

Mehmet, M.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

Michelberger, P.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).

Miragliotta, J.

Moran, B.

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)

Mori, Y.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

Myers, R. A.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electrooptic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).

Nakamura, S.

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)

Ng, H. M.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).

O’Brien, J. L.

J. L. O’Brien, “Optical quantum computing,” Science 318(5856), 1567–1570 (2007).
[PubMed]

Ozawa, A.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).

Palacios, T.

J. W. Chung, J.-k. Lee, E. L. Piner, and T. Palacios, “Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs,” IEEE Electron Device Lett. 30(10), 1015–1017 (2009).

Paniccia, M. J.

Park, H.

Piner, E. L.

J. W. Chung, J.-k. Lee, E. L. Piner, and T. Palacios, “Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs,” IEEE Electron Device Lett. 30(10), 1015–1017 (2009).

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).

Ponce, F. A.

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).

Ramer, R.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electrooptic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).

Rivoire, K.

K. Rivoire, Z. L. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97(4), 043103 (2010).

Sands, T.

W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett. 72(5), 599–601 (1998).

Sato, H.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[PubMed]

Schnabel, R.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

Schremer, A. T.

A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, “High electron mobility AlGaN/GaN heterostructure on (111) Si,” Appl. Phys. Lett. 76(6), 736–738 (2000).

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Shah Hosseini, E.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[PubMed]

Shealy, J. R.

A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, “High electron mobility AlGaN/GaN heterostructure on (111) Si,” Appl. Phys. Lett. 76(6), 736–738 (2000).

Shen, Y. R.

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).

Shih, Y. H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Shoji, I.

Smart, J. A.

A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, “High electron mobility AlGaN/GaN heterostructure on (111) Si,” Appl. Phys. Lett. 76(6), 736–738 (2000).

Soltani, M.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[PubMed]

Strekalov, D. V.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[PubMed]

Suda, J.

Taillaert, D.

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[PubMed]

Udem, T.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[PubMed]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

Vlasov, Y. A.

S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[PubMed]

Vuckovic, J.

K. Rivoire, Z. L. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97(4), 043103 (2010).

Wang, Y.

A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, “High electron mobility AlGaN/GaN heterostructure on (111) Si,” Appl. Phys. Lett. 76(6), 736–738 (2000).

Weimann, N. G.

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).

Weinfurter, H.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Weisbuch, C.

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)

Wickenden, D. K.

Wieczorek, W.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).

Wilson, R. A.

Wong, W. S.

W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett. 72(5), 599–601 (1998).

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

Xia, F. N. A.

S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[PubMed]

Yegnanarayanan, S.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

Yoshimura, M.

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Zheng, K.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electrooptic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).

Appl. Phys. Lett. (6)

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83(6), 1077–1079 (2003).

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electrooptic effect,” Appl. Phys. Lett. 67(10), 1349–1351 (1995).

A. T. Schremer, J. A. Smart, Y. Wang, O. Ambacher, N. C. MacDonald, and J. R. Shealy, “High electron mobility AlGaN/GaN heterostructure on (111) Si,” Appl. Phys. Lett. 76(6), 736–738 (2000).

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett. 88,000–000 (2006)

W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Appl. Phys. Lett. 72(5), 599–601 (1998).

K. Rivoire, Z. L. Lin, F. Hatami, and J. Vuckovic, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97(4), 043103 (2010).

IEEE Electron Device Lett. (1)

J. W. Chung, J.-k. Lee, E. L. Piner, and T. Palacios, “Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs,” IEEE Electron Device Lett. 30(10), 1015–1017 (2009).

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).

Nature (4)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989).

S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[PubMed]

F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997).

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (4)

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104(15), 153901 (2010).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Science (2)

J. L. O’Brien, “Optical quantum computing,” Science 318(5856), 1567–1570 (2007).
[PubMed]

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[PubMed]

Other (4)

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Second-harmonic generation in silicon nitride ring resonators,” arXiv:1010.6042v1, http://arxiv.org/abs/1010.6042

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, CA, 2003), pp. xvii, 578 p.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. Quantum Electronics–Principles and Applications Series (Elsevier/Academic, Amsterdam 2007), p. xvi.

D. G. Rabus, Integrated Ring Resonators: the Compendium, Springer Series in Optical Sciences (Springer, Berlin, 2007), p. xv.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

GaN photonic circuits are built on GaN on silicon dioxide on silicon (GaNOI) substrates. The GaNOI substrate fabrication process runs as follows: PECVD oxide is first deposited onto commercially available GaN on Si (111) wafers to assist the bonding process; the Si (111) layer is removed after the bonding and the new GaN surface undergoes CMP.

Fig. 2
Fig. 2

a) An AFM image of a 5 µm × 5 µm area showing rms roughness of 4 nm on the polished GaN surface; (b) a cross sectional scanning electron micrograph showing a fabricated GaN waveguide (in false-color), oxide layers and the silicon (100) substrate. The trapezoidal profile of the waveguide is due to the anisotropy of the RIE process.

Fig. 3
Fig. 3

Photonic device and measurement setup. (a) optical micrograph of the GaN ring resonator circuit; the pump light is coupled through one of the 1550 nm grating couplers (outer pair). The generated SH is coupled out from the center 780 nm grating coupler; the inset shows a false color scanning electron micrograph of the coupling region showing the 500 nm wide pulley waveguide coupled to the ring resonator with a coupling gap of 150 nm. The waveguide width of the ring is 860 nm. (b) measurement setup: the microring is pumped optically by a tunable laser source (TLS), amplified by an erbium doped fiber amplifier (EDFA); the SH generated light is coupled out of the device into optical fibers and analyzed with a spectrometer. Meanwhile the out of plane scattered SH light is collected by a microscope objective and focused onto a multimode fiber with a 50 µm diameter core. A visible spectrometer is used to analyze the wavelength spectrum.

Fig. 4
Fig. 4

Second harmonic generation in a GaN microring resonator. (a) phase matching is achieved by varying the waveguide width to match the effective index of the fundamental pump light to that of the sixth optical mode of the SH. The optimal waveguide width is found to be 860 nm. (b) FEM simulation of fundamental mode profile for 1560 nm wavelength at the optimal waveguide width of 860 nm; the waveguide sidewalls are non-vertical due to chemical RIE. (c) FEM simulation of the sixth mode profile of the SH wavelength of 780 nm at the optimal waveguide width of 860 nm.(d) tuning of SHG from 766 nm to 788 nm by aligning the pump light to different resonant wavelengths; (e) the double dips in the optical resonances confirm that both clockwise and counterclockwise modes are excited in the ring resonator; (f) visible CCD camera image (in false-color) showing SH is coupled out of the ring resonator in both directions of the output waveguide. The picture is taken with an exposure time 60 times longer than that used in panel (g); (g) a series of visible CCD camera images (in false color) showing SHG standing wave patterns on the microring when the pump wavelength is tuned into different resonant wavelengths.

Fig. 5
Fig. 5

Optical transmission performance and SHG power output. (a) Through port transmission spectrum of the pump light showing ring resonances separated by a FSR of 3.8 nm enveloped by the profile of the grating coupler; typical quality factors are ~10,000; the shaded grey area covers the optical resonances that are used to generated the SH light shown in panel (b). (b) the SH conversion efficiency as the pump wavelength is continuously tuned from 1540 nm to 1568 nm (grey area in panel (a)); conversion efficiency of roughly −45 dB is observed when the pump wavelength coincides with one of the ring resonances. (c) the quadratic dependence of SH power in the output waveguide on the pump power in the input waveguide (markers) and the parabolic fit (red line); Inset: the slope of the double log plot is fitted to be 2.03 ± 0.02, very close to the theoretical quadratic law.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η = Γ F p 2 F s L 2 π 2 2 A e f f , p 2 λ p 2 A s c ε 0 n s χ 2 2 P p .
Γ = | E s * E p dA | 2 | E p | 2 dA | E s | 2 dA .
F = | κ 1 t 1 t 2 α | .

Metrics