Abstract

The dispersion-induced phase noise (PN) in an OFDM RoF system at 60 GHz leads to not only subcarrier phase rotation (PRT) but also intercarrier interference (ICI) to severely degrade the transmission performance, when a commercial cost-effective DFB laser with the linewidth of several MHz is adopted. To mitigate both PRT and ICI, a post PN suppression algorithm is proposed, and it does not require any bandwidth-consuming pilot tone. For a 25.78-Gbps 16-QAM OFDM RoF signal using the laser with 1.8-MHz linewidth, employing the algorithm can extend the maximum transmission distance which corresponds to 3-dBm power penalty at the BER of 2×10−3 from 75 km to more than 115 km, i.e. 50% increment of transmission distance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25(11), 3301–3320 (2007).
    [CrossRef]
  2. Y. X. Gu, B. Luo, C. S. Park, L. C. Ong, M.-T. Zhou, and S. Kato, “60 GHz Radio-over-Fiber for Gbps Transmission,” in Proceedings of Global Symp. Millimeter Waves (GSMM), pp. 41–43,(2008).
  3. C. T. Lin, J. Chen, P.-T. Shih, W. J. Jiang, and S. Chi, “Ultra-hgh data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol. 28(16), 2296–2306 (2010).
    [CrossRef]
  4. Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
    [CrossRef]
  5. H. C. Chien, A. Chowdhury, Z. Jia, Y. T. Hsueh, and G. K. Chang, “Long-Reach, 60-GHz Mm-Wave Optical-Wireless Access Network Using,” European Conference on Optical Communication (ECOC’08), paper Tu.3.F.3, 2008.
  6. W. R. Peng, J. Chen, and S. Chi, “On the phase noise impact in direct-detection optical OFDM transmission,” IEEE Photon. Technol. Lett. 22(9), 649–651 (2010).
    [CrossRef]
  7. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM Transmission in Metro/Access Networks,” Optical Fiber Communication (OFC’09), paper OMV1, 2009.
  8. C. C. Wei and J. J. Chen, “Study on dispersion-induced phase noise in an optical OFDM radio-over-fiber system at 60-GHz band,” Opt. Express 18(20), 20774–20785 (2010).
    [CrossRef] [PubMed]
  9. R. Lin, “Next Generation PON in Emerging Networks,” Optical Fiber Communication (OFC’09), paper OWH1, 2008.
  10. S. Wu, P. Liu, and Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
    [CrossRef]
  11. W.-R. Peng, I. Morita, and H. Tanaka, “Digital Phase Noise Estimation and Mitigation Approach for Direct-Detection Optical OFDM Transmissions,” European Conference on Optical Communication (ECOC’10), paper Tu.3.C.3, 2010.
  12. W. J. Jiang, C. T. Lin, L. Y. Wang He, C. C. Wei, C. H. Ho, Y. M. Yang, P. T. Shih, J. Chen, and S. Chi, “32.65-Gbps OFDM RoF Signal Generation at 60GHz Employing an Adaptive I/Q Imbalance Correction,” European Conference on Optical Communication (ECOC’10), paper Th.9.B.5, 2010.
  13. C.-T. Lin, P.-T. Shih, J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photon. Technol. Lett. 20(12), 1027–1029 (2008).
    [CrossRef]

2010 (3)

2008 (2)

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

C.-T. Lin, P.-T. Shih, J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photon. Technol. Lett. 20(12), 1027–1029 (2008).
[CrossRef]

2007 (1)

2006 (1)

S. Wu, P. Liu, and Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
[CrossRef]

Bar-Ness, Y.

S. Wu, P. Liu, and Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
[CrossRef]

Buck, J. A.

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Chang, G. K.

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Chen, J.

W. R. Peng, J. Chen, and S. Chi, “On the phase noise impact in direct-detection optical OFDM transmission,” IEEE Photon. Technol. Lett. 22(9), 649–651 (2010).
[CrossRef]

C. T. Lin, J. Chen, P.-T. Shih, W. J. Jiang, and S. Chi, “Ultra-hgh data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol. 28(16), 2296–2306 (2010).
[CrossRef]

C.-T. Lin, P.-T. Shih, J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photon. Technol. Lett. 20(12), 1027–1029 (2008).
[CrossRef]

Chen, J. J.

Chi, S.

C. T. Lin, J. Chen, P.-T. Shih, W. J. Jiang, and S. Chi, “Ultra-hgh data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol. 28(16), 2296–2306 (2010).
[CrossRef]

W. R. Peng, J. Chen, and S. Chi, “On the phase noise impact in direct-detection optical OFDM transmission,” IEEE Photon. Technol. Lett. 22(9), 649–651 (2010).
[CrossRef]

C.-T. Lin, P.-T. Shih, J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photon. Technol. Lett. 20(12), 1027–1029 (2008).
[CrossRef]

Chien, H. C.

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Chowdhury, A.

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

George, J.

Hsueh, Y. T.

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Jia, Z.

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Jiang, W. J.

Kobyakov, A.

Lin, C. T.

Lin, C.-T.

C.-T. Lin, P.-T. Shih, J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photon. Technol. Lett. 20(12), 1027–1029 (2008).
[CrossRef]

Liu, P.

S. Wu, P. Liu, and Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
[CrossRef]

Peng, P.-C.

C.-T. Lin, P.-T. Shih, J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photon. Technol. Lett. 20(12), 1027–1029 (2008).
[CrossRef]

Peng, W. R.

W. R. Peng, J. Chen, and S. Chi, “On the phase noise impact in direct-detection optical OFDM transmission,” IEEE Photon. Technol. Lett. 22(9), 649–651 (2010).
[CrossRef]

Sauer, M.

Shih, P.-T.

C. T. Lin, J. Chen, P.-T. Shih, W. J. Jiang, and S. Chi, “Ultra-hgh data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats,” J. Lightwave Technol. 28(16), 2296–2306 (2010).
[CrossRef]

C.-T. Lin, P.-T. Shih, J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photon. Technol. Lett. 20(12), 1027–1029 (2008).
[CrossRef]

Wei, C. C.

Wu, S.

S. Wu, P. Liu, and Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
[CrossRef]

Xue, W.-Q.

C.-T. Lin, P.-T. Shih, J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photon. Technol. Lett. 20(12), 1027–1029 (2008).
[CrossRef]

Yu, J.

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

W. R. Peng, J. Chen, and S. Chi, “On the phase noise impact in direct-detection optical OFDM transmission,” IEEE Photon. Technol. Lett. 22(9), 649–651 (2010).
[CrossRef]

C.-T. Lin, P.-T. Shih, J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering,” IEEE Photon. Technol. Lett. 20(12), 1027–1029 (2008).
[CrossRef]

IEEE Trans. Wirel. Comm. (1)

S. Wu, P. Liu, and Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (6)

W.-R. Peng, I. Morita, and H. Tanaka, “Digital Phase Noise Estimation and Mitigation Approach for Direct-Detection Optical OFDM Transmissions,” European Conference on Optical Communication (ECOC’10), paper Tu.3.C.3, 2010.

W. J. Jiang, C. T. Lin, L. Y. Wang He, C. C. Wei, C. H. Ho, Y. M. Yang, P. T. Shih, J. Chen, and S. Chi, “32.65-Gbps OFDM RoF Signal Generation at 60GHz Employing an Adaptive I/Q Imbalance Correction,” European Conference on Optical Communication (ECOC’10), paper Th.9.B.5, 2010.

Y. X. Gu, B. Luo, C. S. Park, L. C. Ong, M.-T. Zhou, and S. Kato, “60 GHz Radio-over-Fiber for Gbps Transmission,” in Proceedings of Global Symp. Millimeter Waves (GSMM), pp. 41–43,(2008).

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “Optical OFDM Transmission in Metro/Access Networks,” Optical Fiber Communication (OFC’09), paper OMV1, 2009.

R. Lin, “Next Generation PON in Emerging Networks,” Optical Fiber Communication (OFC’09), paper OWH1, 2008.

H. C. Chien, A. Chowdhury, Z. Jia, Y. T. Hsueh, and G. K. Chang, “Long-Reach, 60-GHz Mm-Wave Optical-Wireless Access Network Using,” European Conference on Optical Communication (ECOC’08), paper Tu.3.F.3, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simplified PNS algorithm.

Fig. 2
Fig. 2

Experimental setup of the 60-GHz RoF transmission system.

Fig. 3
Fig. 3

The BER after iterative PNS algorithm as a function of L.

Fig. 4
Fig. 4

BER curves after 115-km fiber with the laser power of (a) 10.5 dBm and (b) 8.5 dBm. (B-to-B: only 3-m air transmission).

Fig. 5
Fig. 5

Power penalty as a function of transmission distance.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R m , q = H q S m , q I m , q ( 0 ) + n = 0 , n q N 1 H n S m , n I m , n ( q n ) + W m , q ,
R m = I ˜ m H ˜ S m + W m ,
R m J ˜ m D m + W m = D ˜ m J m + W m ,
R m J ˜ m D m + W m = d ˜ m j m + W m ,
j m ( 1 ) = ( d ˜ m ( 0 ) H d ˜ m ( 0 ) ) 1 d ˜ m ( 0 ) H R m ,
( J m ( 1 ) ( 0 ) H ˜ ) 1 [ R m ( J ˜ m ( 1 ) J m ( 1 ) ( 0 ) I ^ ) D m ]

Metrics