Abstract

We report on experimental and numerical investigation of two-photon coincidence properties of the parametric spontaneous down-converted field excited by a high brightness blue LED in bulk lithium iodate crystal. Ratio of up to 11.5% of coincidence, which cannot be attributed to classical coincidences, to single photon counts was recorded at the outputs of multimode fibers, demonstrating well-preserved biphoton property. This result, combined with practically useful power of the source, suggests its possible application for a class of quantum experiments.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes,” Phys. Rev. 124(6), 1646–1654 (1961).
  2. S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).
  3. A. A. Malygin, A. N. Perin, and A. V. Sergienko, “Efficient generator of a two-photon field of visible radiation,” Sov. J. Quantum Electron. 11(7), 939–941 (1981).
  4. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
    [PubMed]
  5. J. W. Pan, Z.-B. Chen, M. Żukowski, H. Weinfurter, and A. Zeilinger, “Multi-photon entanglement and interferometry,” arXiv:0805.2853v1, http://arxiv.org/abs/0805.2853 .
  6. M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
    [PubMed]
  7. T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).
  8. M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62(19), 2209–2212 (1989).
    [PubMed]
  9. J. Brendel, E. Mohler, and W. Martienssen, “Experimental Test of Bell’s Inequality for Energy and Time,” Europhys. Lett. 20(7), 575–580 (1992).
  10. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [PubMed]
  11. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [PubMed]
  12. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
  13. D. L. Weinberg, “Observation of Optical Parametric Noise Pumped by a Mercury Lamp,” J. Appl. Phys. 41(10), 4239–4240 (1970).
  14. A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325(5945), 1221 (2009).
    [PubMed]
  15. G. Tamošauskas, J. Galinis, A. Dubietis, and A. Piskarskas, “Observation of spontaneous parametric down-conversion excited by high brightness blue LED,” Opt. Express 18(5), 4310–4315 (2010).
    [PubMed]
  16. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [PubMed]
  17. X. Y. Zoua, L. J. Wanga, and L. Mandeļ, “Violation of classical probability in parametric down-conversion,” Opt. Commun. 84(5-6), 351–354 (1991).
  18. P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, “How focused pumping affects type-II spontaneous parametric down-conversion,” Phys. Rev. A 72(3), 033803 (2005).
  19. S. Cialdi, F. Castelli, and M. G. A. Paris, “Properties of entangled photon pairs generated by a CW laser with small coherence time: theory and experiment,” J. Mod. Opt. 56(2), 215–225 (2009).
  20. J. Galinis, G. Tamošauskas, and A. Piskarskas, “Modeling of photon coincidence and dispersive properties of spontaneous parametric down-converted field excited by incoherent source,” in preparation.
  21. J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26(21), 4616–4619 (1987).
    [PubMed]
  22. Z. Zhao, K. A. Meyer, W. B. Whitten, and R. W. Shaw, “Optical absorption measurements with parametric down-converted photons,” Anal. Chem. 80(19), 7635–7638 (2008).
    [PubMed]

2010

2009

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325(5945), 1221 (2009).
[PubMed]

S. Cialdi, F. Castelli, and M. G. A. Paris, “Properties of entangled photon pairs generated by a CW laser with small coherence time: theory and experiment,” J. Mod. Opt. 56(2), 215–225 (2009).

2008

Z. Zhao, K. A. Meyer, W. B. Whitten, and R. W. Shaw, “Optical absorption measurements with parametric down-converted photons,” Anal. Chem. 80(19), 7635–7638 (2008).
[PubMed]

2005

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).

P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, “How focused pumping affects type-II spontaneous parametric down-conversion,” Phys. Rev. A 72(3), 033803 (2005).

2001

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[PubMed]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

1992

J. Brendel, E. Mohler, and W. Martienssen, “Experimental Test of Bell’s Inequality for Energy and Time,” Europhys. Lett. 20(7), 575–580 (1992).

1991

X. Y. Zoua, L. J. Wanga, and L. Mandeļ, “Violation of classical probability in parametric down-conversion,” Opt. Commun. 84(5-6), 351–354 (1991).

1989

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62(19), 2209–2212 (1989).
[PubMed]

1987

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[PubMed]

J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26(21), 4616–4619 (1987).
[PubMed]

1981

A. A. Malygin, A. N. Perin, and A. V. Sergienko, “Efficient generator of a two-photon field of visible radiation,” Sov. J. Quantum Electron. 11(7), 939–941 (1981).

1970

D. L. Weinberg, “Observation of Optical Parametric Noise Pumped by a Mercury Lamp,” J. Appl. Phys. 41(10), 4239–4240 (1970).

1967

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).

1961

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes,” Phys. Rev. 124(6), 1646–1654 (1961).

Barreiro, J. T.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).

Brendel, J.

J. Brendel, E. Mohler, and W. Martienssen, “Experimental Test of Bell’s Inequality for Energy and Time,” Europhys. Lett. 20(7), 575–580 (1992).

Byer, R. L.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).

Castelli, F.

S. Cialdi, F. Castelli, and M. G. A. Paris, “Properties of entangled photon pairs generated by a CW laser with small coherence time: theory and experiment,” J. Mod. Opt. 56(2), 215–225 (2009).

Chekhova, M. V.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[PubMed]

Cialdi, S.

S. Cialdi, F. Castelli, and M. G. A. Paris, “Properties of entangled photon pairs generated by a CW laser with small coherence time: theory and experiment,” J. Mod. Opt. 56(2), 215–225 (2009).

D’Angelo, M.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[PubMed]

Dubietis, A.

Fedrizzi, A.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

Galinis, J.

G. Tamošauskas, J. Galinis, A. Dubietis, and A. Piskarskas, “Observation of spontaneous parametric down-conversion excited by high brightness blue LED,” Opt. Express 18(5), 4310–4315 (2010).
[PubMed]

J. Galinis, G. Tamošauskas, and A. Piskarskas, “Modeling of photon coincidence and dispersive properties of spontaneous parametric down-converted field excited by incoherent source,” in preparation.

Harris, S. E.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).

Herbst, T.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[PubMed]

Horne, M. A.

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62(19), 2209–2212 (1989).
[PubMed]

Jennewein, T.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

Kofler, J.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

Kwiat, P. G.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).

Lee, P. S. K.

P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, “How focused pumping affects type-II spontaneous parametric down-conversion,” Phys. Rev. A 72(3), 033803 (2005).

Louisell, W. H.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes,” Phys. Rev. 124(6), 1646–1654 (1961).

Ma, X.-S.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Malygin, A. A.

A. A. Malygin, A. N. Perin, and A. V. Sergienko, “Efficient generator of a two-photon field of visible radiation,” Sov. J. Quantum Electron. 11(7), 939–941 (1981).

Mandel, L.

X. Y. Zoua, L. J. Wanga, and L. Mandeļ, “Violation of classical probability in parametric down-conversion,” Opt. Commun. 84(5-6), 351–354 (1991).

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[PubMed]

Martienssen, W.

J. Brendel, E. Mohler, and W. Martienssen, “Experimental Test of Bell’s Inequality for Energy and Time,” Europhys. Lett. 20(7), 575–580 (1992).

Matthews, J. C. F.

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325(5945), 1221 (2009).
[PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Meyer, K. A.

Z. Zhao, K. A. Meyer, W. B. Whitten, and R. W. Shaw, “Optical absorption measurements with parametric down-converted photons,” Anal. Chem. 80(19), 7635–7638 (2008).
[PubMed]

Mohler, E.

J. Brendel, E. Mohler, and W. Martienssen, “Experimental Test of Bell’s Inequality for Energy and Time,” Europhys. Lett. 20(7), 575–580 (1992).

O’Brien, J. L.

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325(5945), 1221 (2009).
[PubMed]

Oshman, M. K.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[PubMed]

Paris, M. G. A.

S. Cialdi, F. Castelli, and M. G. A. Paris, “Properties of entangled photon pairs generated by a CW laser with small coherence time: theory and experiment,” J. Mod. Opt. 56(2), 215–225 (2009).

Perin, A. N.

A. A. Malygin, A. N. Perin, and A. V. Sergienko, “Efficient generator of a two-photon field of visible radiation,” Sov. J. Quantum Electron. 11(7), 939–941 (1981).

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).

Piskarskas, A.

G. Tamošauskas, J. Galinis, A. Dubietis, and A. Piskarskas, “Observation of spontaneous parametric down-conversion excited by high brightness blue LED,” Opt. Express 18(5), 4310–4315 (2010).
[PubMed]

J. Galinis, G. Tamošauskas, and A. Piskarskas, “Modeling of photon coincidence and dispersive properties of spontaneous parametric down-converted field excited by incoherent source,” in preparation.

Politi, A.

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325(5945), 1221 (2009).
[PubMed]

Prevedel, R.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

Ramelow, S.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

Rarity, J. G.

Ratschbacher, L.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

Ridley, K. D.

Scheidl, T.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

A. A. Malygin, A. N. Perin, and A. V. Sergienko, “Efficient generator of a two-photon field of visible radiation,” Sov. J. Quantum Electron. 11(7), 939–941 (1981).

Shaw, R. W.

Z. Zhao, K. A. Meyer, W. B. Whitten, and R. W. Shaw, “Optical absorption measurements with parametric down-converted photons,” Anal. Chem. 80(19), 7635–7638 (2008).
[PubMed]

Shih, Y.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Shimony, A.

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62(19), 2209–2212 (1989).
[PubMed]

Siegman, A. E.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes,” Phys. Rev. 124(6), 1646–1654 (1961).

Tamošauskas, G.

G. Tamošauskas, J. Galinis, A. Dubietis, and A. Piskarskas, “Observation of spontaneous parametric down-conversion excited by high brightness blue LED,” Opt. Express 18(5), 4310–4315 (2010).
[PubMed]

J. Galinis, G. Tamošauskas, and A. Piskarskas, “Modeling of photon coincidence and dispersive properties of spontaneous parametric down-converted field excited by incoherent source,” in preparation.

Tapster, P. R.

Ursin, R.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

van Exter, M. P.

P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, “How focused pumping affects type-II spontaneous parametric down-conversion,” Phys. Rev. A 72(3), 033803 (2005).

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Wanga, L. J.

X. Y. Zoua, L. J. Wanga, and L. Mandeļ, “Violation of classical probability in parametric down-conversion,” Opt. Commun. 84(5-6), 351–354 (1991).

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Weinberg, D. L.

D. L. Weinberg, “Observation of Optical Parametric Noise Pumped by a Mercury Lamp,” J. Appl. Phys. 41(10), 4239–4240 (1970).

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Whitten, W. B.

Z. Zhao, K. A. Meyer, W. B. Whitten, and R. W. Shaw, “Optical absorption measurements with parametric down-converted photons,” Anal. Chem. 80(19), 7635–7638 (2008).
[PubMed]

Woerdman, J. P.

P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, “How focused pumping affects type-II spontaneous parametric down-conversion,” Phys. Rev. A 72(3), 033803 (2005).

Yariv, A.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes,” Phys. Rev. 124(6), 1646–1654 (1961).

Zeilinger, A.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62(19), 2209–2212 (1989).
[PubMed]

Zhao, Z.

Z. Zhao, K. A. Meyer, W. B. Whitten, and R. W. Shaw, “Optical absorption measurements with parametric down-converted photons,” Anal. Chem. 80(19), 7635–7638 (2008).
[PubMed]

Zoua, X. Y.

X. Y. Zoua, L. J. Wanga, and L. Mandeļ, “Violation of classical probability in parametric down-conversion,” Opt. Commun. 84(5-6), 351–354 (1991).

Anal. Chem.

Z. Zhao, K. A. Meyer, W. B. Whitten, and R. W. Shaw, “Optical absorption measurements with parametric down-converted photons,” Anal. Chem. 80(19), 7635–7638 (2008).
[PubMed]

Appl. Opt.

Europhys. Lett.

J. Brendel, E. Mohler, and W. Martienssen, “Experimental Test of Bell’s Inequality for Energy and Time,” Europhys. Lett. 20(7), 575–580 (1992).

J. Appl. Phys.

D. L. Weinberg, “Observation of Optical Parametric Noise Pumped by a Mercury Lamp,” J. Appl. Phys. 41(10), 4239–4240 (1970).

J. Mod. Opt.

S. Cialdi, F. Castelli, and M. G. A. Paris, “Properties of entangled photon pairs generated by a CW laser with small coherence time: theory and experiment,” J. Mod. Opt. 56(2), 215–225 (2009).

N. J. Phys.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution,” N. J. Phys. 11(8), 085002 (2009).

Nature

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Opt. Commun.

X. Y. Zoua, L. J. Wanga, and L. Mandeļ, “Violation of classical probability in parametric down-conversion,” Opt. Commun. 84(5-6), 351–354 (1991).

Opt. Express

Phys. Rev.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes,” Phys. Rev. 124(6), 1646–1654 (1961).

Phys. Rev. A

P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, “How focused pumping affects type-II spontaneous parametric down-conversion,” Phys. Rev. A 72(3), 033803 (2005).

Phys. Rev. Lett.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18(18), 732–734 (1967).

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[PubMed]

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62(19), 2209–2212 (1989).
[PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[PubMed]

Science

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325(5945), 1221 (2009).
[PubMed]

Sov. J. Quantum Electron.

A. A. Malygin, A. N. Perin, and A. V. Sergienko, “Efficient generator of a two-photon field of visible radiation,” Sov. J. Quantum Electron. 11(7), 939–941 (1981).

Other

J. W. Pan, Z.-B. Chen, M. Żukowski, H. Weinfurter, and A. Zeilinger, “Multi-photon entanglement and interferometry,” arXiv:0805.2853v1, http://arxiv.org/abs/0805.2853 .

J. Galinis, G. Tamošauskas, and A. Piskarskas, “Modeling of photon coincidence and dispersive properties of spontaneous parametric down-converted field excited by incoherent source,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A simplified scheme of experimental photon counting setup (a). Implemented geometrical model for computation of coupling SPDC radiation into fibers (b).

Fig. 2
Fig. 2

Photon coincidence ratio dependence on fiber tip position in channel 1: experimental data (circles) and normalized numerical traces (a). SPDC photon flux at a single channel and coincidence rate dependence on crystal angular tuning (b).

Fig. 3
Fig. 3

Photon flux (a) and coincidence count (b) dependence on the pump beam diameter and divergence. Experimental points represent series of measurements performed with a pump of variable spatial spectrum 9, 15, 25, 40 mrad with constant beam size ( × ) and variable beam diameter 0.8, 1.8, 3, 5, 8 mm with constant spatial spectrum (□). Numerical simulation traces (solid lines) are obtained for respective fixed parameter of the pump of constant radiance.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N s = 0 0 ρ det 0 β L 2 ω s P ( ω p , ϕ , θ ) q ( ω s ) s i n c 2 ( Δ k L 2 ) d φ d ρ d ω s ;
N j = V j V p u m p V p u m p N s ;     attributes to intersection .

Metrics