Abstract

The performance of Space-Time Block Codes combined with Discrete MultiTone modulation applied in a Large Core Step-Index POF link is examined theoretically. A comparative study is performed considering several schemes that employ multiple transmitters/receivers and a fiber span of 100 m. The performance enhancement of the higher diversity order configurations is revealed by application of a Margin Adaptive Bit Loading technique that employs Chow’s algorithm. Simulations results of the above schemes, in terms of Bit Error Rate as a function of the received Signal to Noise Ratio, are provided. An improvement of more than 6 dB for the required electrical SNR is observed for a 3 × 1 configuration, in order to achieve a 10−3 BER value, as compared to a conventional Single Input Single output scheme.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Grivas, N. Raptis, and D. Syvridis, “An optical mode filtering technique for the improvement of the large core SI-POF link performance,” J. Lightwave Technol. 28(12), 1796–1801 (2010).
    [CrossRef]
  2. B. Charbonnier, P. Urvoas, M. Ouzzif, J. Le Masson, J. D. Lambkin, M. O’Gorman, and R. Gaudino, “EU Project POF-PLUS: gigabit transmission over 50 m of step-index plastic optical fiber for home networking,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWR4.
  3. S. C. J. Lee, F. Breyer, S. Randel, D. Cárdenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWM2.
  4. A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010).
    [CrossRef]
  5. J. Yang, X. Li, M. S. Alfiad, A. M. J. Koonen, and H. P. A. van den Boom, “Low cost high capacity data transmission over plastic optical fibre using quadrature amplitude modulation,” presented at the Symposium IEEE/LEOS Benelux Chapter, Eindhoven, Netherlands, 2006.
  6. W. Zhang, X.-G. Xia, and K. Letaief, “Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems,” IEEE Wireless Commun. 14(3), 32–43 (2007).
    [CrossRef]
  7. H. P. A. van den Boom, A. M. J. Koonen, F. M. Huijskens, and W. van Gils, “Angular mode group diversity multiplexing for multi-channel communication in a single step-index plastic optical fibre,” presented at the Symposium IEEE/LEOS Benelux Chapter, Mons, Belgium, 2005.
  8. S. Schöllmann, N. Schrammar, and W. Rosenkranz, “Experimental realization of 3 × 3 MIMO system with mode group diversity multiplexing limited by modal noise,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA68.
  9. C. P. Tsekrekos, A. Martinez, F. M. Huijskens, and A. M. J. Koonen, “Mode group diversity multiplexing transceiver design for graded-index multimode fibers,” in Proceedings of 31st European Conference on Optical Communication, Glasgow, Scotland, 25–29 Sept. 2005.
  10. R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 195–197 (2006).
    [CrossRef]
  11. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
    [CrossRef] [PubMed]
  12. M. Greenberg, M. Nazarathy, and M. Orenstein, “Data parallelization by optical MIMO transmission over multimode fiber with intermodal coupling,” J. Lightwave Technol. 25(6), 1503–1514 (2007).
    [CrossRef]
  13. J. Siuzdak, L. Maksymiuk, and G. Stepniak, “A 2 and 3 channel mode group diversity multiplexing transmission over graded and step index multimode fibers,” in Proceedings of 34th European Conference on Optical Communication, Brussels, Belgium, 21–25 Sept., 2008.
  14. A. Djordjevich and S. Savović, “Numerical solution of the power flow equation in step-index plastic optical fibers,” J. Opt. Soc. Am. B 21(8), 1437–1442 (2004).
    [CrossRef]
  15. J. Mateo, M. A. Losada, and J. Zubia, “Frequency response in step index plastic optical fibers obtained from the generalized power flow equation,” Opt. Express 17(4), 2850–2860 (2009).
    [CrossRef] [PubMed]
  16. F. Breyer, N. Hanik, S. Randel, and B. Spinnler, “Investigations on electronic equalization for step-index polymer optical fiber systems,” presented at the Symposium IEEE/LEOS Benelux Chapter, Eindhoven, Netherlands, 2006.
  17. B. Drljača, S. Savović, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time-dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).
  18. D. Gloge, “Impulse response of clad optical multimode fibers,” Bell Syst. Tech. J. 52, 801–816 (1973).
  19. S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation [Invited],” J. Opt. Netw. 7(2), 183–196 (2008).
    [CrossRef]
  20. J. W. Goodman and E. G. Rawson, “Statistics of modal noise in fibers: a case of constrained speckle,” Opt. Lett. 6(7), 324–326 (1981).
    [CrossRef] [PubMed]
  21. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Comm. 16(8), 1451–1458 (1998).
    [CrossRef]
  22. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Comm. 17(3), 451–460 (1999).
    [CrossRef]
  23. H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inf. Theory 49(10), 2636–2647 (2003).
    [CrossRef]
  24. J. M. Cioffi, Advanced digital communication, Course Reader (2008). http://www.stanford.edu/group/cioffi/ee379c/ .
  25. S. B. Colak and A. Alonso, “Spectral modulation of MIMO channels for multimode fiber communications,” presented at the Symposium IEEE/LEOS Benelux Chapter, Enschede, Netherlands, 2003.
  26. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
    [CrossRef] [PubMed]

2010

2009

J. Mateo, M. A. Losada, and J. Zubia, “Frequency response in step index plastic optical fibers obtained from the generalized power flow equation,” Opt. Express 17(4), 2850–2860 (2009).
[CrossRef] [PubMed]

B. Drljača, S. Savović, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time-dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

2008

2007

M. Greenberg, M. Nazarathy, and M. Orenstein, “Data parallelization by optical MIMO transmission over multimode fiber with intermodal coupling,” J. Lightwave Technol. 25(6), 1503–1514 (2007).
[CrossRef]

W. Zhang, X.-G. Xia, and K. Letaief, “Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems,” IEEE Wireless Commun. 14(3), 32–43 (2007).
[CrossRef]

2006

R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 195–197 (2006).
[CrossRef]

2004

2003

H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inf. Theory 49(10), 2636–2647 (2003).
[CrossRef]

2000

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

1999

V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Comm. 17(3), 451–460 (1999).
[CrossRef]

1998

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Comm. 16(8), 1451–1458 (1998).
[CrossRef]

1981

1973

D. Gloge, “Impulse response of clad optical multimode fibers,” Bell Syst. Tech. J. 52, 801–816 (1973).

Abrate, A.

A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010).
[CrossRef]

Alamouti, S. M.

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Comm. 16(8), 1451–1458 (1998).
[CrossRef]

Argyris, A.

Bogris, A.

Breyer, F.

Calderbank, A. R.

V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Comm. 17(3), 451–460 (1999).
[CrossRef]

Djordjevich, A.

B. Drljača, S. Savović, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time-dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

A. Djordjevich and S. Savović, “Numerical solution of the power flow equation in step-index plastic optical fibers,” J. Opt. Soc. Am. B 21(8), 1437–1442 (2004).
[CrossRef]

Drljaca, B.

B. Drljača, S. Savović, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time-dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

Gaudino, R.

A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010).
[CrossRef]

Gloge, D.

D. Gloge, “Impulse response of clad optical multimode fibers,” Bell Syst. Tech. J. 52, 801–816 (1973).

Goodman, J. W.

Greenberg, M.

Grivas, E.

Hamacher, M.

Hsu, R. C. J.

R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 195–197 (2006).
[CrossRef]

Jafarkhani, H.

V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Comm. 17(3), 451–460 (1999).
[CrossRef]

Jalali, B.

R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 195–197 (2006).
[CrossRef]

Koonen, A. M. J.

Lee, J. H.

H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inf. Theory 49(10), 2636–2647 (2003).
[CrossRef]

Lee, S. C. J.

Letaief, K.

W. Zhang, X.-G. Xia, and K. Letaief, “Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems,” IEEE Wireless Commun. 14(3), 32–43 (2007).
[CrossRef]

Losada, M. A.

Mateo, J.

Nazarathy, M.

Nespola, A.

A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010).
[CrossRef]

Offenbeck, B.

A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010).
[CrossRef]

Orenstein, M.

Randel, S.

Raptis, N.

Rawson, E. G.

Savovic, S.

B. Drljača, S. Savović, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time-dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

A. Djordjevich and S. Savović, “Numerical solution of the power flow equation in step-index plastic optical fibers,” J. Opt. Soc. Am. B 21(8), 1437–1442 (2004).
[CrossRef]

Sayed, A. H.

R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 195–197 (2006).
[CrossRef]

Shah, A.

R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 195–197 (2006).
[CrossRef]

Shin, H.

H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inf. Theory 49(10), 2636–2647 (2003).
[CrossRef]

Stuart, H. R.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

Syvridis, D.

Tarighat, A.

R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 195–197 (2006).
[CrossRef]

Tarokh, V.

V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Comm. 17(3), 451–460 (1999).
[CrossRef]

van den Boom, H. P. A.

Weber, N.

A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010).
[CrossRef]

Xia, X.-G.

W. Zhang, X.-G. Xia, and K. Letaief, “Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems,” IEEE Wireless Commun. 14(3), 32–43 (2007).
[CrossRef]

Zerna, C.

A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010).
[CrossRef]

Zhang, W.

W. Zhang, X.-G. Xia, and K. Letaief, “Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems,” IEEE Wireless Commun. 14(3), 32–43 (2007).
[CrossRef]

Zubia, J.

Acta Phys. Pol. A

B. Drljača, S. Savović, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time-dependent power flow equation,” Acta Phys. Pol. A 116, 658–660 (2009).

Bell Syst. Tech. J.

D. Gloge, “Impulse response of clad optical multimode fibers,” Bell Syst. Tech. J. 52, 801–816 (1973).

IEEE Commun. Lett.

R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 195–197 (2006).
[CrossRef]

IEEE J. Sel. Areas Comm.

S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Comm. 16(8), 1451–1458 (1998).
[CrossRef]

V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications: performance results,” IEEE J. Sel. Areas Comm. 17(3), 451–460 (1999).
[CrossRef]

IEEE Photon. J.

A. Nespola, A. Abrate, R. Gaudino, C. Zerna, B. Offenbeck, and N. Weber, “High-speed communications over polymer optical fibers for in-building cabling and home networking,” IEEE Photon. J. 2(3), 347–358 (2010).
[CrossRef]

IEEE Trans. Inf. Theory

H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inf. Theory 49(10), 2636–2647 (2003).
[CrossRef]

IEEE Wireless Commun.

W. Zhang, X.-G. Xia, and K. Letaief, “Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems,” IEEE Wireless Commun. 14(3), 32–43 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Netw.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Science

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

Other

F. Breyer, N. Hanik, S. Randel, and B. Spinnler, “Investigations on electronic equalization for step-index polymer optical fiber systems,” presented at the Symposium IEEE/LEOS Benelux Chapter, Eindhoven, Netherlands, 2006.

J. Siuzdak, L. Maksymiuk, and G. Stepniak, “A 2 and 3 channel mode group diversity multiplexing transmission over graded and step index multimode fibers,” in Proceedings of 34th European Conference on Optical Communication, Brussels, Belgium, 21–25 Sept., 2008.

J. M. Cioffi, Advanced digital communication, Course Reader (2008). http://www.stanford.edu/group/cioffi/ee379c/ .

S. B. Colak and A. Alonso, “Spectral modulation of MIMO channels for multimode fiber communications,” presented at the Symposium IEEE/LEOS Benelux Chapter, Enschede, Netherlands, 2003.

H. P. A. van den Boom, A. M. J. Koonen, F. M. Huijskens, and W. van Gils, “Angular mode group diversity multiplexing for multi-channel communication in a single step-index plastic optical fibre,” presented at the Symposium IEEE/LEOS Benelux Chapter, Mons, Belgium, 2005.

S. Schöllmann, N. Schrammar, and W. Rosenkranz, “Experimental realization of 3 × 3 MIMO system with mode group diversity multiplexing limited by modal noise,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA68.

C. P. Tsekrekos, A. Martinez, F. M. Huijskens, and A. M. J. Koonen, “Mode group diversity multiplexing transceiver design for graded-index multimode fibers,” in Proceedings of 31st European Conference on Optical Communication, Glasgow, Scotland, 25–29 Sept. 2005.

J. Yang, X. Li, M. S. Alfiad, A. M. J. Koonen, and H. P. A. van den Boom, “Low cost high capacity data transmission over plastic optical fibre using quadrature amplitude modulation,” presented at the Symposium IEEE/LEOS Benelux Chapter, Eindhoven, Netherlands, 2006.

B. Charbonnier, P. Urvoas, M. Ouzzif, J. Le Masson, J. D. Lambkin, M. O’Gorman, and R. Gaudino, “EU Project POF-PLUS: gigabit transmission over 50 m of step-index plastic optical fiber for home networking,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWR4.

S. C. J. Lee, F. Breyer, S. Randel, D. Cárdenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWM2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) The customized Fourier transform of Eq. (1) and the measured frequency response for a 100 m long SI-POF link. (b) The impulse response of the SI-POF given by Eq. (1) with all the parameters defined.

Fig. 5
Fig. 5

BER for SISO, 2 × 1, 3 × 1 and 4 × 1 STBC schemes as a function of the multi-channel electrical SNR at the receiver. For each scheme, two combinations of utilized subcarriers and QAM constellations are considered. In each case, N SC is the number of subcarriers used for the transmission of payload data.

Fig. 2
Fig. 2

Frequency response of the system SI-POF – Detector for different detectors with radii in the range [0.125 α, a] (circular detectors), where a is the fiber radius and equal to 490 μm.

Fig. 3
Fig. 3

(a) The normalized mean value and (b) the square root of variance of the received output power as a function of the percentage of the total modes received by the detector.

Fig. 4
Fig. 4

Schematic of the simulation setup.

Fig. 6
Fig. 6

BER for SISO, 2 × 1, 3 × 1 and 4 × 1 STBC schemes as a function of the multi-channel electrical SNR at the receiver. Correlation is included for the STBC schemes.

Fig. 7
Fig. 7

BER as a function of the detector radius. The multi-channel electrical SNR value of 28 dB was chosen for the case of detector radius equal to 100% of the fiber core radius.

Fig. 8
Fig. 8

BER for SISO, 2 × 1, 3 × 1 and 4 × 1 STBC schemes as a function of multi-channel electrical SNR with Chow’s MA loading algorithm applied for each SNR value. For the transmit diversity schemes, correlation is also considered.

Fig. 9
Fig. 9

BER for SISO, 2 × 1, 3 × 1 and 4 × 1 STBC schemes as a function of the multi-channel electrical SNR at the receiver. The bit and energy allocation per subcarrier are calculated with Chow’s MA loading algorithm applied for only one SNR value (20 dB).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

h ( z , t ) = Θ 2 π T t ( t γ z T + 1 2 ) 1 exp ( γ 2 z 2 T 4 t t T ) ,
μ ( W d ) = 1 W f M d M f = 1 W f A d A f = 1 W f r 2 a 2 and σ 2 ( W d ) = 1 ( W f ) 2 M d ( M f M d ) ( M f ) 2 ( M f + 1 ) ,
r 0 = r ( t ) = h 0 ( t ) ( β I 0 ( t ) ) + h 1 ( t ) ( β I 1 ( t ) ) r 1 = r ( t + T s ) = h 0 ( t ) ( β I ˜ 0 ( t + T s ) ) + h 1 ( t ) ( β I ˜ 1 ( t + T s ) ) ,
R 0 , k = [ H 0 , k H 1 , k ] [ S 0 , k S 1 , k ] + N 0 , k , t R 1 , k = [ H 0 , k H 1 , k ] [ S 1 , k S 0 , k ] + N 1 , k , t + T s ,
b k , max = log 2 ( 1 + S N R k )
b k = log 2 ( 1 + S N R k / Γ ) , with S N R k = E k g k ,
Γ = 1 / 3 ( Q i n v ( P s y m b o l / 4 ) ) 2 ,
[ H 0 , k H 1 , k ] ( [ H 0 , k H 1 , k ] ( R 1 / 2 ) T ) with R 1 / 2 ( R 1 / 2 ) H = P c o r = [ 1 ρ ρ 1 ] and
h 0 h 0 ( R 1 / 2 ) T ( 1 , 1 ) + h 1 ( R 1 / 2 ) T ( 2 , 1 ) and h 1 h 0 ( R 1 / 2 ) T ( 2 , 1 ) + h 1 ( R 1 / 2 ) T ( 2 , 2 ) ,

Metrics