Abstract

We report the first demonstration of an electrically driven hybrid silicon/III–V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III–V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
    [CrossRef] [PubMed]
  2. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
    [CrossRef] [PubMed]
  3. Silicon photonics II, edited by D. Lockwood and L. Pavesi, Topics in Applied Physics, Springer Verlag (2010).
  4. B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
    [CrossRef]
  5. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005).
    [CrossRef] [PubMed]
  6. W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [CrossRef]
  7. D. Marris-Morini, L. Vivien, J.-M. Fédéli, E. Cassan, Ph. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
    [CrossRef] [PubMed]
  8. L. Vivien, M. Rouvière, J.-M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007).
    [CrossRef] [PubMed]
  9. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer,” Adv. Opt.Technol. 2008, 412518 (2008).
  10. H. Kroemer, T. Liu, and P. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1-4), 96–102 (1989).
    [CrossRef]
  11. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
    [CrossRef] [PubMed]
  12. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  13. B. Gelloz, A. Kojima, and N. Koshida, “Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing,” Appl. Phys. Lett. 87(3), 031107 (2005).
    [CrossRef]
  14. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  15. K. Solehmainen, M. Kapulainen, P. Heimala, and K. Polamo, “Erbium doped waveguides fabricated with atomic layer deposition method,” IEEE Photon. Technol. Lett. 16(1), 194–196 (2004).
    [CrossRef]
  16. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [CrossRef] [PubMed]
  17. K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron. 6(1), 4–13 (2000).
    [CrossRef]
  18. J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001).
    [CrossRef]
  19. G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [CrossRef]
  20. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  21. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34(9), 1345–1347 (2009).
    [CrossRef] [PubMed]
  22. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
    [CrossRef] [PubMed]
  23. A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
    [CrossRef] [PubMed]
  24. A. Yariv and X. K. Sun, “Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis,” Opt. Express 15(15), 9147–9151 (2007).
    [CrossRef] [PubMed]
  25. X. Sun and A. Yariv, “Engineering supermode silicon/III–V hybrid waveguides for laser oscillation,” J. Opt. Soc. Am. B 25(6), 923–926 (2008).
    [CrossRef]
  26. X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009).
    [CrossRef] [PubMed]
  27. J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000).
    [CrossRef]
  28. M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
    [CrossRef]
  29. A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
    [CrossRef]

2010 (5)

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[CrossRef]

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (4)

2007 (3)

2006 (2)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

2005 (3)

K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

B. Gelloz, A. Kojima, and N. Koshida, “Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing,” Appl. Phys. Lett. 87(3), 031107 (2005).
[CrossRef]

2004 (3)

K. Solehmainen, M. Kapulainen, P. Heimala, and K. Polamo, “Erbium doped waveguides fabricated with atomic layer deposition method,” IEEE Photon. Technol. Lett. 16(1), 194–196 (2004).
[CrossRef]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
[CrossRef] [PubMed]

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

2001 (1)

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001).
[CrossRef]

2000 (3)

J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000).
[CrossRef]

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron. 6(1), 4–13 (2000).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

1990 (1)

A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
[CrossRef]

1989 (1)

H. Kroemer, T. Liu, and P. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1-4), 96–102 (1989).
[CrossRef]

Abraham, P.

J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000).
[CrossRef]

Aspar, B.

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

Atwater, H. A.

Baets, R.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Ben Bakir, B.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[CrossRef]

Black, K. A.

J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000).
[CrossRef]

Bogaerts, W.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Bowers, J. E.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
[CrossRef] [PubMed]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000).
[CrossRef]

Boyraz, O.

Brouckaert, J.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Camacho-Aguilera, R.

Cassan, E.

Chiu, Y. J.

J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000).
[CrossRef]

Cohen, O.

Corcoran, B.

Crozat, P.

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Damlencourt, J. F.

Dautremont-Smith, W. C.

A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
[CrossRef]

de Gyves, A. V.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[CrossRef]

De Vos, K.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Di Cioccio, L.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer,” Adv. Opt.Technol. 2008, 412518 (2008).

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

Diest, K. A.

Doan, M. T.

Dumon, P.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Eggleton, B. J.

El Melhaoui, L.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Fang, A. W.

Fedeli, J. M.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer,” Adv. Opt.Technol. 2008, 412518 (2008).

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

Fedeli, J.-M.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[CrossRef]

Fédéli, J.-M.

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Gelloz, B.

B. Gelloz, A. Kojima, and N. Koshida, “Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing,” Appl. Phys. Lett. 87(3), 031107 (2005).
[CrossRef]

Ghaffari, A.

Grillet, C.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Hatakeyama, H.

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001).
[CrossRef]

Heimala, P.

K. Solehmainen, M. Kapulainen, P. Heimala, and K. Polamo, “Erbium doped waveguides fabricated with atomic layer deposition method,” IEEE Photon. Technol. Lett. 16(1), 194–196 (2004).
[CrossRef]

Hoepfner, C.

Itoh, M.

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001).
[CrossRef]

Jalali, B.

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Kapulainen, M.

K. Solehmainen, M. Kapulainen, P. Heimala, and K. Polamo, “Erbium doped waveguides fabricated with atomic layer deposition method,” IEEE Photon. Technol. Lett. 16(1), 194–196 (2004).
[CrossRef]

Karim, A.

J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000).
[CrossRef]

Kato, K.

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron. 6(1), 4–13 (2000).
[CrossRef]

Kato, T.

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001).
[CrossRef]

Katz, A.

A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
[CrossRef]

Kernevez, N.

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

Kimerling, L. C.

Kitamura, S.

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001).
[CrossRef]

Koch, B. R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Kojima, A.

B. Gelloz, A. Kojima, and N. Koshida, “Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing,” Appl. Phys. Lett. 87(3), 031107 (2005).
[CrossRef]

Koshida, N.

B. Gelloz, A. Kojima, and N. Koshida, “Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing,” Appl. Phys. Lett. 87(3), 031107 (2005).
[CrossRef]

Kostrzewa, M.

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

Krauss, T. F.

Kroemer, H.

H. Kroemer, T. Liu, and P. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1-4), 96–102 (1989).
[CrossRef]

Kuo, Y.-H.

Lagahe-Blanchard, C.

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

Laval, S.

Le Roux, X.

Lee, K. K.

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
[CrossRef] [PubMed]

Lim, D. R.

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Liu, H.-C.

Liu, J.

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Liu, T.

H. Kroemer, T. Liu, and P. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1-4), 96–102 (1989).
[CrossRef]

Lively, E.

Lofgreen, D.

J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000).
[CrossRef]

Lyan, P.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[CrossRef]

Lyan, Ph.

Mandorlo, F.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer,” Adv. Opt.Technol. 2008, 412518 (2008).

Mangeney, J.

Marris-Morini, D.

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Michel, J.

Monat, C.

Moss, D. J.

O’Faolain, L.

Oh, W.-Y.

Orobtchouk, R.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[CrossRef]

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer,” Adv. Opt.Technol. 2008, 412518 (2008).

Pan, D.

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Pascal, D.

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Pelusi, M.

Petroff, P.

H. Kroemer, T. Liu, and P. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1-4), 96–102 (1989).
[CrossRef]

Piprek, J.

J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000).
[CrossRef]

Polamo, K.

K. Solehmainen, M. Kapulainen, P. Heimala, and K. Polamo, “Erbium doped waveguides fabricated with atomic layer deposition method,” IEEE Photon. Technol. Lett. 16(1), 194–196 (2004).
[CrossRef]

Porzier, C.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Raday, O.

Reed, G. T.

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Regreny, P.

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Rojo-Romeo, P.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer,” Adv. Opt.Technol. 2008, 412518 (2008).

Roman, A.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[CrossRef]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Roussin, J. C.

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

Rouvière, M.

Sasaki, J.

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001).
[CrossRef]

Scherer, A.

Seassal, C.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer,” Adv. Opt.Technol. 2008, 412518 (2008).

Selvaraja, S.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Shearn, M. J.

Shimoda, T.

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001).
[CrossRef]

Solehmainen, K.

K. Solehmainen, M. Kapulainen, P. Heimala, and K. Polamo, “Erbium doped waveguides fabricated with atomic layer deposition method,” IEEE Photon. Technol. Lett. 16(1), 194–196 (2004).
[CrossRef]

Sun, X.

Sun, X. K.

Tamanuki, T.

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001).
[CrossRef]

Tohmori, Y.

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron. 6(1), 4–13 (2000).
[CrossRef]

Van Thourhout, D.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Vivien, L.

Wada, K.

Weir, B. E.

A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
[CrossRef]

White, T. P.

Yap, K. P.

Yariv, A.

Zadok, A.

Zussy, M.

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

Adv. Opt.Technol. (1)

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer,” Adv. Opt.Technol. 2008, 412518 (2008).

Appl. Phys. Lett. (1)

B. Gelloz, A. Kojima, and N. Koshida, “Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing,” Appl. Phys. Lett. 87(3), 031107 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron. 6(1), 4–13 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000).
[CrossRef]

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[CrossRef]

K. Solehmainen, M. Kapulainen, P. Heimala, and K. Polamo, “Erbium doped waveguides fabricated with atomic layer deposition method,” IEEE Photon. Technol. Lett. 16(1), 194–196 (2004).
[CrossRef]

IEEE Trans. Adv. Packag. (1)

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001).
[CrossRef]

J. Appl. Phys. (1)

A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990).
[CrossRef]

J. Cryst. Growth (1)

H. Kroemer, T. Liu, and P. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1-4), 96–102 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[CrossRef]

Nature (3)

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Opt. Express (8)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

A. Yariv and X. K. Sun, “Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis,” Opt. Express 15(15), 9147–9151 (2007).
[CrossRef] [PubMed]

L. Vivien, M. Rouvière, J.-M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007).
[CrossRef] [PubMed]

D. Marris-Morini, L. Vivien, J.-M. Fédéli, E. Cassan, Ph. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
[CrossRef] [PubMed]

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

Sens. Actuators A Phys. (1)

M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006).
[CrossRef]

Other (1)

Silicon photonics II, edited by D. Lockwood and L. Pavesi, Topics in Applied Physics, Springer Verlag (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) A schematic representation of the hybrid Si/III-V laser with superimposed optical microscope images of each building-block constituting the underlying Si photonic circuit. b) Top and side views of a taper (mode transformer) showing the transfer of the supermode from the upper active waveguide to the lower silicon waveguide. c) A cross-section of the refractive index profile of the structure. The top InGaAsP/InP waveguide width is 5 μm. The Si waveguide is defined by a rib height H and a slab height h of 500 nm and 250 nm, respectively.

Fig. 2
Fig. 2

Evolution of the lasing supermode inside the hybrid Fabry-Pérot cavity. a) Supermode profile in the middle part of the structure. b) Mode transformer: transfer of the supermode power by adiabatically widening the width of the silicon waveguide. c) Fundamental mode of the Si waveguide.

Fig. 3
Fig. 3

Schematic representations of passive devices constituting the bottom silicon level of the laser structure. Bragg reflector: the period (Λ) is 650 nm, the etch depth (e) and the duty cycle (dc) are 500 nm and 50%, respectively. Mode transformer: the rib height H and the slab height h are 500 nm and 250 nm, respectively. The width of the rib W varies from 0.7 to 1.1 µm. Surface-grating coupler: Λ = 590 nm, e = 125nm and dc = 50%.

Fig. 4
Fig. 4

Schematics of the die-to-wafer bonding process. b) Photos of dies bonded on a patterned 200 mm SOI wafer, before and after substrate removal.

Fig. 5
Fig. 5

a) Cross-sectional SEM image of a hybrid structure before metallization. b) Top-view optical microscope image of a Si/III-V laser at the end of fabrication process.

Fig. 6
Fig. 6

a) Infrared images of the hybrid Si/III-V laser taken slightly below threshold (75 mA) and well above threshold (300 mA). b) Fiber coupled laser output as a function of drive current (L–I curve) of a 950-µm-long laser under pulsed operation, at 20 °C. The width and the period are 100 ns and 1 µs, respectively. c) Laser spectrum, linear and dB scales.

Tables (1)

Tables Icon

Table 1 III-V Epitaxial Growth Layer Structure

Metrics