Abstract

Photonic Nanojets are highly localized wave fields emerging directly behind dielectric microspheres; if suitably illuminated. In this contribution we reveal how different illumination conditions can be used to engineer the photonic Nanojets by measuring them in amplitude and phase with a high resolution interference microscope. We investigate how the wavelength, the amplitude distribution of the illumination, its polarization, or a break in symmetry of the axial-symmetric structure and the illumination affect the position, the localization and the shape of the photonic Nanojets. Various fascinating properties are systematically revealed and their implications for possible applications are discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377–445 (1907).
  2. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981), Chap. 9.
  3. A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
    [CrossRef] [PubMed]
  4. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [CrossRef] [PubMed]
  5. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [CrossRef] [PubMed]
  6. C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
    [CrossRef] [PubMed]
  7. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008).
    [CrossRef] [PubMed]
  8. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
    [CrossRef] [PubMed]
  9. C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
    [CrossRef]
  10. M.-S. Kim, T. Scharf, and H. P. Herzig, “Small-size microlens characterization by multiwavelength high-resolution interference microscopy,” Opt. Express 18(14), 14319–14329 (2010).
    [CrossRef] [PubMed]
  11. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22(21), 3421–3432 (1983).
    [CrossRef] [PubMed]
  12. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987).
    [CrossRef] [PubMed]
  13. C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A, Pure Appl. Opt. 6(5), 271–276 (2004).
    [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), 7th ed.
  15. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. Entw. Mech 9, 413–468 (1873).
    [CrossRef]
  16. H. Köhler, “On Abbe’s theory of image formation in the microscope,” Opt. Acta (Lond.) 28, 1691–1701 (1981).
    [CrossRef]
  17. H. Gross, H. Zugge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley, 2007) Vol. 3, p. 126.
  18. W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005) Vol. 2, p. 410.
  19. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
    [CrossRef]
  20. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [CrossRef] [PubMed]
  21. G. Indebetouw, “Nondiffracting optical-fields - some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6(1), 150–152 (1989).
    [CrossRef]
  22. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
    [CrossRef] [PubMed]
  23. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  24. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. (accepted for publication).
    [PubMed]
  25. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008).
    [CrossRef] [PubMed]
  26. T. Wang, C. Kuang, X. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
    [CrossRef]
  27. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
    [CrossRef]
  28. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, 1998).
  29. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000).
    [CrossRef]
  30. G. M. Philip and N. K. Viswanathan, “Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam,” J. Opt. Soc. Am. A 27(11), 2394–2401 (2010).
    [CrossRef]
  31. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [CrossRef] [PubMed]
  32. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
    [CrossRef] [PubMed]
  33. T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
    [CrossRef] [PubMed]

2011 (1)

T. Wang, C. Kuang, X. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

2010 (3)

2009 (4)

A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
[CrossRef] [PubMed]

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[CrossRef] [PubMed]

2008 (2)

2006 (1)

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

2005 (1)

2004 (2)

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[CrossRef] [PubMed]

C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A, Pure Appl. Opt. 6(5), 271–276 (2004).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

2000 (1)

1996 (2)

1989 (1)

1988 (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[CrossRef]

1987 (3)

P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987).
[CrossRef] [PubMed]

F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

1983 (1)

1981 (1)

H. Köhler, “On Abbe’s theory of image formation in the microscope,” Opt. Acta (Lond.) 28, 1691–1701 (1981).
[CrossRef]

1907 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377–445 (1907).

1873 (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. Entw. Mech 9, 413–468 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. Entw. Mech 9, 413–468 (1873).
[CrossRef]

Andrew, T. L.

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[CrossRef] [PubMed]

Arlt, J.

Backman, V.

Bonod, N.

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Burow, R.

Chen, Z.

Dändliker, R.

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

Devilez, A.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Eiju, T.

Elssner, K.-E.

Ferrand, P.

Gahagan, K. T.

Gérard, D.

Goldstein, R. M.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[CrossRef]

Gori, F.

F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
[CrossRef]

Grzanna, J.

Guattari, G.

F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
[CrossRef]

Hao, X.

T. Wang, C. Kuang, X. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

Hariharan, P.

Heifetz, A.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Herzig, H. P.

M.-S. Kim, T. Scharf, and H. P. Herzig, “Small-size microlens characterization by multiwavelength high-resolution interference microscopy,” Opt. Express 18(14), 14319–14329 (2010).
[CrossRef] [PubMed]

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A, Pure Appl. Opt. 6(5), 271–276 (2004).
[CrossRef]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. (accepted for publication).
[PubMed]

Indebetouw, G.

Kim, M.-S.

M.-S. Kim, T. Scharf, and H. P. Herzig, “Small-size microlens characterization by multiwavelength high-resolution interference microscopy,” Opt. Express 18(14), 14319–14329 (2010).
[CrossRef] [PubMed]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. (accepted for publication).
[PubMed]

Köhler, H.

H. Köhler, “On Abbe’s theory of image formation in the microscope,” Opt. Acta (Lond.) 28, 1691–1701 (1981).
[CrossRef]

Kong, S.-C.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Kuang, C.

T. Wang, C. Kuang, X. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Li, X.

Liu, X.

T. Wang, C. Kuang, X. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

Märki, I.

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Menon, R.

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[CrossRef] [PubMed]

Merkel, K.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377–445 (1907).

Mühlig, S.

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. (accepted for publication).
[PubMed]

Oreb, B. F.

Padgett, M. J.

Padovani, C.

F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
[CrossRef]

Philip, G. M.

Pianta, M.

Popov, E.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Rigneault, H.

Rockstuhl, C.

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A, Pure Appl. Opt. 6(5), 271–276 (2004).
[CrossRef]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. (accepted for publication).
[PubMed]

Ruiz, C. M.

Sahakian, A. V.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Salt, M.

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A, Pure Appl. Opt. 6(5), 271–276 (2004).
[CrossRef]

Schadt, M.

Scharf, T.

M.-S. Kim, T. Scharf, and H. P. Herzig, “Small-size microlens characterization by multiwavelength high-resolution interference microscopy,” Opt. Express 18(14), 14319–14329 (2010).
[CrossRef] [PubMed]

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. (accepted for publication).
[PubMed]

Schwider, J.

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Simpson, J. J.

Spolaczyk, R.

Stalder, M.

Stout, B.

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Swartzlander, G. A.

Taflove, A.

Tsai, H.-Y.

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[CrossRef] [PubMed]

Viswanathan, N. K.

Wang, T.

T. Wang, C. Kuang, X. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

Wenger, J.

Werner, C. L.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[CrossRef]

Zebker, H. A.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377–445 (1907).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. (accepted for publication).
[PubMed]

Arch. Mikrosk. Anat. Entw. Mech (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. Entw. Mech 9, 413–468 (1873).
[CrossRef]

Curr. Nanosci. (1)

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändliker, “High resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

J Comput Theor Nanosci (1)

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

J. Opt. (1)

T. Wang, C. Kuang, X. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

C. Rockstuhl, M. Salt, and H. P. Herzig, “Theoretical and experimental investigation of phase singularities generated by optical micro- and nano-structures,” J. Opt. A, Pure Appl. Opt. 6(5), 271–276 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Acta (Lond.) (1)

H. Köhler, “On Abbe’s theory of image formation in the microscope,” Opt. Acta (Lond.) 28, 1691–1701 (1981).
[CrossRef]

Opt. Commun. (1)

F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Radio Sci. (1)

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23(4), 713–720 (1988).
[CrossRef]

Science (2)

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[CrossRef] [PubMed]

Other (5)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, 1998).

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981), Chap. 9.

H. Gross, H. Zugge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley, 2007) Vol. 3, p. 126.

W. Singer, M. Totzeck, and H. Gross, Handbook of Optical Systems (Wiley, 2005) Vol. 2, p. 410.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), 7th ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the experimental setup. After divided by the polarizing beam splitter (PBS), a linearly polarized plane wave emerges in both the reference (Ref.) and object (Obj.) arms. In the reference arm, the piezo driven mirror modulates the optical path with five steps of 90° (=λ/4). In the object arm, additional elements to manage polarization and illumination can be used to manipulate the incident illumination. They are placed either in to the position of squares one or two. Details of the use of such additional components will be discussed in section 2.2.

Fig. 2
Fig. 2

Use of additional illumination components: (a) a spherical-wavefront illumination is obtained by simply adding a focusing lens at the position denoted by square #1 and either a converging or diverging wavefront can be adjusted by properly placing the foci with respect to the entrance plane of the sphere. (b) A Bessel-Gauss beam as illumination requires to focus an annular incident beam. Elements are fixed on the same piezo stage to be moved together with the sample in order to keep illumination conditions constant during the z-axis scanning. The spheres are only shown for completeness at this point in the paper.

Fig. 3
Fig. 3

The x-z slices of the measured 3D intensity and phase distributions of various illuminations. They are measured without a sample in the HRIM. The intensity distributions of focused Gaussian beams of (a) low NA and (b) high NA and (c) corresponding phase distribution of (b), The intensity distributions of focused Bessel beams of (d) low NA and (e) high NA and (f) corresponding phase distribution of (e). Please note that the scales in low NA and high NA beams are different, which are indicated by a scale bar in each image. Intensities are all normalized.

Fig. 4
Fig. 4

Measured intensity in the focal plane of a low NA (0.15) lens focusing an azimuthally polarized beam with and without an additional polarizer: (a) without a polarizer a typically doughnut shape intensity appears, (b) with a polarizer parallel to the x-axis, and (c) with a polarizer parallel to the y-axis symmetric intensity lobs are observed. Image size is 10 x 10 µm2. Intnsities are all normalized.

Fig. 5
Fig. 5

Measured intensity distributions of photonic Nanojet from a 2-μm glass sphere for different wavelengths: (a) 642 nm, (b) 532 nm and (c) 405 nm. The top surface of the sphere is set to the z = 0 µm. The white circle indicates the 2-μm sphere. Intensities are all normalized.

Fig. 6
Fig. 6

Corresponding simulations to Fig. 5: (a) 642 nm, (b) 532 nm and (c) 405 nm. They are rigorously calculated by the Mie theory and the scalar propagation technique with the consideration of the NA of the observation system. Intensities are all normalized.

Fig. 7
Fig. 7

Measured 2D phase distributions of spherical wavefornts at the entrance pupil plane of the sphere, which are used to engineer photonic Nanojets: (a) ROC = 52.7 μm, (b) ROC = 14.9 μm, (c) ROC = −17 μm, and (d) ROC = −48.3 μm. The colorbar scale is radian. (e) Profiles through the center of the wavefront from (a) to (d).

Fig. 8
Fig. 8

Longitudinal intensity maps of photonic Nanojets generated by a 12-µm glass sphere. (a) Reference measurement with a plane-wave illumination. Engineered Nanojets when the sphere is illuminated by (b) diverging wavefront with a ROC of 52.7 μm, (c) diverging wavefront with a ROC of 14.9 μm, (d) converging wavefront with a ROC of −17 μm, and (e) converging wavefront with a ROC of −48.3 μm. The white circle indicates the 12-μm sphere. Intensities are all normalized and the scale of all images is the same.

Fig. 9
Fig. 9

(a) Measured x-z intensity distribution of a low NA (0.15) focused Bessel beam (the image size is 40 x 20 µm2). At the plane of z = 0 µm, (b) the x-y intensity and (c) the x-y phase distributions are recorded (the image size is 20 x 20 µm2). Intensities are all normalized. The FWHM size of the central lobe is measured to be 4 µm.

Fig. 10
Fig. 10

(a) Measured x-z intensity distribution of a Nanojet produced by a 2-µm sphere when the central lobe of the Bessel beam is larger than the sphere and (b) the close-up image of (a). (c) Measured x-z intensity distribution of a Nanojet produced by a 12-µm sphere when the central lobe of the Bessel beam is smaller than a sphere and (d) the close-up image of (c). (e) The x-y intensity image at z = 13 µm (a dark focus) and (f) the x-y intensity image at z = 12 µm (a bright focus). The intensity levels in (a) and (c) are displayed with a logarithmic scale in order to visualize the scattered fields out of the sphere and especially self-healing of the Bessel beam in (a). The white circle indicates the 2-µm sphere in (a) and the 12-µm sphere in (c), respectively. Intensities are all nomalized.

Fig. 11
Fig. 11

Measured intensity distributions of the two-spot Nanojet from the 4-µm sphere by off-axis Bessel-Gauss beam illumination: (a) a grayscale CCD image of the off-axis Bessel beam and two-spot Nanojet, (b) the x-y slice of the 3D intensity distributions at the top of the sphere (c) the y-z slice at the center of the left spot, (d) the y-z slice at the center of the right spot and (e) the x-z slice of the two spots. The white circle indicates the 4-µm sphere. Intensities are all normalized.

Fig. 12
Fig. 12

Grayscale CCD images of particular illumination spots and corresponding engineered Nanojet spots by spheres of different size: (a) illumination spots at the entrance plane without a sphere (same as Fig. 4), (b) with the 1-µm sphere, (c) with the 3-µm sphere, and (d) with the 10-µm sphere. The white circle indicates microspheres. Image size is 10 x 10 µm2.

Fig. 13
Fig. 13

3D intensity measurements of the hollow Nanojet generated by the 10-µm sphere same as the top image of Fig. 12(d): (a) the x-z slice, (b) the x-y slice at the focal plane, and (c) the y-z slice of 3D measurement data. The FWHM size of the central dark area is measured to be around 200 nm. The illumination here was an azimuthally polarized beam.

Metrics