Abstract

Uni-traveling-carrier waveguide photodiodes (PDs) with a variable optical confinement mode size transformer are demonstrated. The optical mode is large at the input for minimal front-end saturation and the mode transforms as the light propagates so that the absorption profile is optimized for both high-power and high-speed performance. Two differently designed PDs are presented. PD A demonstrates a 3-dB bandwidth of 12.6 GHz, and saturation currents of 40 mA at 1 GHz and 34 mA at 10 GHz. PD B demonstrates a 3-dB bandwidth of 2.5 GHz, a saturation current greater than 100 mA at 1 GHz, a peak RF output power of + 19 dBm, and a third-order output intercept point of 29.1 dBm at a photocurrent of 60 mA.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
    [CrossRef]
  2. A. Beling, H. Pan, H. Chen, and J. C. Campbell, “High-power modified uni-travling carrier photodiode with > 50 dBm third order intercept point,” in IEEE MTT-S Microwave Symposium Digest (2008), pp. 499–502.
  3. A. Joshi, S. Datta, and D. Becker, “GRIN lens-coupled top-illuminated highly linear InGaAs photodiodes,” IEEE Photon. Technol. Lett. 20(17), 1500–1502 (2008).
    [CrossRef]
  4. J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40 dBm OIP3 for up to 80 mA of photocurrent,” in Device Research Conference (2009).
  5. A. Ramaswamy, J. Klamkin, N. Nunoya, L. A. Johansson, L. A. Coldren, and J. E. Bowers, “Three-tone characterization of high-linearity waveguide uni-traveling-carrier photodiodes,” in IEEE Lasers and Electrooptics Society Conference (IEEE, 2008), pp. 286–287.
  6. L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11(1), 111–113 (1999).
    [CrossRef]
  7. S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
    [CrossRef]
  8. S. Jasmin, N. Vodjdani, J. Renaud, and A. Enard, “Diluted- and distributed-absorption microwave waveguide photodiodes for high efficiency and high power,” IEEE Trans. Microw. Theory Tech. 45(8), 1337–1341 (1997).
    [CrossRef]
  9. S. M. Madison, J. J. Plant, D. C. Oakley, A. Napoleone, and P. W. Juodawlkis, “Slab-coupled optical waveguide photodiode,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWF4.
  10. J. Klamkin, Y.-C. Chang, A. Ramaswamy, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Output saturation and linearity of waveguide uni-traveling-carrier photodiodes,” IEEE J. Quantum Electron. 44(4), 354–359 (2008).
    [CrossRef]
  11. T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).
  12. K. J. Williams and R. D. Esman, “Large-signal compression-current measurements in high-power microwave pin photodiodes,” Electron. Lett. 35(1), 82–84 (1999).
    [CrossRef]

2010 (1)

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[CrossRef]

2008 (2)

A. Joshi, S. Datta, and D. Becker, “GRIN lens-coupled top-illuminated highly linear InGaAs photodiodes,” IEEE Photon. Technol. Lett. 20(17), 1500–1502 (2008).
[CrossRef]

J. Klamkin, Y.-C. Chang, A. Ramaswamy, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Output saturation and linearity of waveguide uni-traveling-carrier photodiodes,” IEEE J. Quantum Electron. 44(4), 354–359 (2008).
[CrossRef]

2003 (1)

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
[CrossRef]

2000 (1)

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).

1999 (2)

K. J. Williams and R. D. Esman, “Large-signal compression-current measurements in high-power microwave pin photodiodes,” Electron. Lett. 35(1), 82–84 (1999).
[CrossRef]

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11(1), 111–113 (1999).
[CrossRef]

1997 (1)

S. Jasmin, N. Vodjdani, J. Renaud, and A. Enard, “Diluted- and distributed-absorption microwave waveguide photodiodes for high efficiency and high power,” IEEE Trans. Microw. Theory Tech. 45(8), 1337–1341 (1997).
[CrossRef]

Anselm, A.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
[CrossRef]

Banfi, F.

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11(1), 111–113 (1999).
[CrossRef]

Becker, D.

A. Joshi, S. Datta, and D. Becker, “GRIN lens-coupled top-illuminated highly linear InGaAs photodiodes,” IEEE Photon. Technol. Lett. 20(17), 1500–1502 (2008).
[CrossRef]

Beling, A.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[CrossRef]

Bowers, J. E.

J. Klamkin, Y.-C. Chang, A. Ramaswamy, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Output saturation and linearity of waveguide uni-traveling-carrier photodiodes,” IEEE J. Quantum Electron. 44(4), 354–359 (2008).
[CrossRef]

Campbell, J. C.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[CrossRef]

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
[CrossRef]

Chang, Y.-C.

J. Klamkin, Y.-C. Chang, A. Ramaswamy, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Output saturation and linearity of waveguide uni-traveling-carrier photodiodes,” IEEE J. Quantum Electron. 44(4), 354–359 (2008).
[CrossRef]

Chen, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[CrossRef]

Coldren, L. A.

J. Klamkin, Y.-C. Chang, A. Ramaswamy, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Output saturation and linearity of waveguide uni-traveling-carrier photodiodes,” IEEE J. Quantum Electron. 44(4), 354–359 (2008).
[CrossRef]

Datta, S.

A. Joshi, S. Datta, and D. Becker, “GRIN lens-coupled top-illuminated highly linear InGaAs photodiodes,” IEEE Photon. Technol. Lett. 20(17), 1500–1502 (2008).
[CrossRef]

Demiguel, S.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
[CrossRef]

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11(1), 111–113 (1999).
[CrossRef]

DenBaars, S. P.

J. Klamkin, Y.-C. Chang, A. Ramaswamy, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Output saturation and linearity of waveguide uni-traveling-carrier photodiodes,” IEEE J. Quantum Electron. 44(4), 354–359 (2008).
[CrossRef]

Enard, A.

S. Jasmin, N. Vodjdani, J. Renaud, and A. Enard, “Diluted- and distributed-absorption microwave waveguide photodiodes for high efficiency and high power,” IEEE Trans. Microw. Theory Tech. 45(8), 1337–1341 (1997).
[CrossRef]

Esman, R. D.

K. J. Williams and R. D. Esman, “Large-signal compression-current measurements in high-power microwave pin photodiodes,” Electron. Lett. 35(1), 82–84 (1999).
[CrossRef]

Furuta, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).

Fushimi, H.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).

Giraudet, L.

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11(1), 111–113 (1999).
[CrossRef]

Herve-Gruyer, G.

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11(1), 111–113 (1999).
[CrossRef]

Ishibashi, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).

Ito, H.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).

Jasmin, S.

S. Jasmin, N. Vodjdani, J. Renaud, and A. Enard, “Diluted- and distributed-absorption microwave waveguide photodiodes for high efficiency and high power,” IEEE Trans. Microw. Theory Tech. 45(8), 1337–1341 (1997).
[CrossRef]

Johansson, L. A.

J. Klamkin, Y.-C. Chang, A. Ramaswamy, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Output saturation and linearity of waveguide uni-traveling-carrier photodiodes,” IEEE J. Quantum Electron. 44(4), 354–359 (2008).
[CrossRef]

Joshi, A.

A. Joshi, S. Datta, and D. Becker, “GRIN lens-coupled top-illuminated highly linear InGaAs photodiodes,” IEEE Photon. Technol. Lett. 20(17), 1500–1502 (2008).
[CrossRef]

Kim, J.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
[CrossRef]

Klamkin, J.

J. Klamkin, Y.-C. Chang, A. Ramaswamy, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Output saturation and linearity of waveguide uni-traveling-carrier photodiodes,” IEEE J. Quantum Electron. 44(4), 354–359 (2008).
[CrossRef]

Kodama, S.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).

Li, N.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
[CrossRef]

Li, X.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
[CrossRef]

Li, Z.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[CrossRef]

Lu, H.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
[CrossRef]

Miyamoto, Y.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).

Nagatsuma, T.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).

Pan, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[CrossRef]

Ramaswamy, A.

J. Klamkin, Y.-C. Chang, A. Ramaswamy, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Output saturation and linearity of waveguide uni-traveling-carrier photodiodes,” IEEE J. Quantum Electron. 44(4), 354–359 (2008).
[CrossRef]

Renaud, J.

S. Jasmin, N. Vodjdani, J. Renaud, and A. Enard, “Diluted- and distributed-absorption microwave waveguide photodiodes for high efficiency and high power,” IEEE Trans. Microw. Theory Tech. 45(8), 1337–1341 (1997).
[CrossRef]

Shimizu, N.

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).

Vodjdani, N.

S. Jasmin, N. Vodjdani, J. Renaud, and A. Enard, “Diluted- and distributed-absorption microwave waveguide photodiodes for high efficiency and high power,” IEEE Trans. Microw. Theory Tech. 45(8), 1337–1341 (1997).
[CrossRef]

Williams, K. J.

K. J. Williams and R. D. Esman, “Large-signal compression-current measurements in high-power microwave pin photodiodes,” Electron. Lett. 35(1), 82–84 (1999).
[CrossRef]

Zheng, X.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
[CrossRef]

Electron. Lett. (1)

K. J. Williams and R. D. Esman, “Large-signal compression-current measurements in high-power microwave pin photodiodes,” Electron. Lett. 35(1), 82–84 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Klamkin, Y.-C. Chang, A. Ramaswamy, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Output saturation and linearity of waveguide uni-traveling-carrier photodiodes,” IEEE J. Quantum Electron. 44(4), 354–359 (2008).
[CrossRef]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron. 46(5), 626–632 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Joshi, S. Datta, and D. Becker, “GRIN lens-coupled top-illuminated highly linear InGaAs photodiodes,” IEEE Photon. Technol. Lett. 20(17), 1500–1502 (2008).
[CrossRef]

L. Giraudet, F. Banfi, S. Demiguel, and G. Herve-Gruyer, “Optical design of evanescently coupled waveguide-fed photodiodes for ultrawide-band applications,” IEEE Photon. Technol. Lett. 11(1), 111–113 (1999).
[CrossRef]

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett. 15(12), 1761–1763 (2003).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

S. Jasmin, N. Vodjdani, J. Renaud, and A. Enard, “Diluted- and distributed-absorption microwave waveguide photodiodes for high efficiency and high power,” IEEE Trans. Microw. Theory Tech. 45(8), 1337–1341 (1997).
[CrossRef]

IEICE Trans. Electron. (1)

T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949 (2000).

Other (4)

S. M. Madison, J. J. Plant, D. C. Oakley, A. Napoleone, and P. W. Juodawlkis, “Slab-coupled optical waveguide photodiode,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWF4.

J. Klamkin, A. Ramaswamy, N. Nunoya, L. A. Johansson, J. E. Bowers, S. P. DenBaars, and L. A. Coldren, “Uni-traveling-carrier waveguide photodiodes with >40 dBm OIP3 for up to 80 mA of photocurrent,” in Device Research Conference (2009).

A. Ramaswamy, J. Klamkin, N. Nunoya, L. A. Johansson, L. A. Coldren, and J. E. Bowers, “Three-tone characterization of high-linearity waveguide uni-traveling-carrier photodiodes,” in IEEE Lasers and Electrooptics Society Conference (IEEE, 2008), pp. 286–287.

A. Beling, H. Pan, H. Chen, and J. C. Campbell, “High-power modified uni-travling carrier photodiode with > 50 dBm third order intercept point,” in IEEE MTT-S Microwave Symposium Digest (2008), pp. 499–502.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) UTC-VCSCOWPD plan-view schematic following ridge formation and top-view schematic of completed device inset. (b) Simulation results comparing absorption profiles of a conventional WGPD and a UTC-VCSCOWPD.

Fig. 2
Fig. 2

Frequency response measurement results at a photocurrent of 20 mA and a bias of −3.5 V. The black line is at −3 dB.

Fig. 3
Fig. 3

Normalized RF power as a function of photocurrent level for varying biases for PD A (a) at 1 GHz and (b) at 10 GHz.

Fig. 4
Fig. 4

Normalized RF power as a function of photocurrent level for varying biases at 1 GHz for PD A.

Fig. 5
Fig. 5

Absolute RF power as a function of photocurrent for PD B under large signal modulation at 900 MHz.

Fig. 6
Fig. 6

(a) Three-tone IMD3 measurement for PD B at a photocurrent level of 60 mA and a bias voltage of −3.5 V. (b) Measured two-tone OIP3 as a function of DC photocurrent level for PD B.

Metrics