A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]
W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]
P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[Crossref]
D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[Crossref]
A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[Crossref]
G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
[Crossref]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[Crossref]
[PubMed]
R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[Crossref]
[PubMed]
I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]
K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[Crossref]
I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[Crossref]
L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[Crossref]
S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[Crossref]
W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]
W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Partial spectra,” J. Lumin. 26(1-2), 85–98 (1983).
[Crossref]
J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1981).
[Crossref]
W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: I. Identification of N-lines,” J. Lumin. 26(1-2), 53–66 (1981).
[Crossref]
W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[Crossref]
R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
[Crossref]
H. M. Kahan and R. M. Macfarlane, “Optical and microwave spectra of Cr3+ in the spinel ZnGa2O4,” J. Chem. Phys. 54(12), 5197–5205 (1971).
[Crossref]
R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25(5), 925–946 (1969).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[Crossref]
G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
[Crossref]
A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[Crossref]
A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[Crossref]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]
W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]
L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[Crossref]
A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[Crossref]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]
I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[Crossref]
R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
[Crossref]
L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[Crossref]
W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]
J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1981).
[Crossref]
P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[Crossref]
A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]
K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[Crossref]
D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[Crossref]
I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[Crossref]
P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[Crossref]
R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[Crossref]
A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[Crossref]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
[Crossref]
I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[Crossref]
S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[Crossref]
A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]
G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
[Crossref]
I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
H. M. Kahan and R. M. Macfarlane, “Optical and microwave spectra of Cr3+ in the spinel ZnGa2O4,” J. Chem. Phys. 54(12), 5197–5205 (1971).
[Crossref]
S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[Crossref]
D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[Crossref]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[Crossref]
A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[Crossref]
A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[Crossref]
W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]
H. M. Kahan and R. M. Macfarlane, “Optical and microwave spectra of Cr3+ in the spinel ZnGa2O4,” J. Chem. Phys. 54(12), 5197–5205 (1971).
[Crossref]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[Crossref]
K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[Crossref]
I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]
W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]
W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Partial spectra,” J. Lumin. 26(1-2), 85–98 (1983).
[Crossref]
J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1981).
[Crossref]
W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: I. Identification of N-lines,” J. Lumin. 26(1-2), 53–66 (1981).
[Crossref]
W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[Crossref]
G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
[Crossref]
P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[Crossref]
S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[Crossref]
W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]
V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[Crossref]
[PubMed]
R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[Crossref]
[PubMed]
I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[Crossref]
W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[Crossref]
W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: I. Identification of N-lines,” J. Lumin. 26(1-2), 53–66 (1981).
[Crossref]
R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25(5), 925–946 (1969).
[Crossref]
P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[Crossref]
D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[Crossref]
S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[Crossref]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25(5), 925–946 (1969).
[Crossref]
L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[Crossref]
K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[Crossref]
S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[Crossref]
K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[Crossref]
D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[Crossref]
A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[Crossref]
A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[Crossref]
W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]
R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[Crossref]
[PubMed]
I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[Crossref]
W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]
W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]
W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]
R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25(5), 925–946 (1969).
[Crossref]
V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[Crossref]
[PubMed]
G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
[Crossref]
K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[Crossref]
P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[Crossref]
I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[Crossref]
H. M. Kahan and R. M. Macfarlane, “Optical and microwave spectra of Cr3+ in the spinel ZnGa2O4,” J. Chem. Phys. 54(12), 5197–5205 (1971).
[Crossref]
S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[Crossref]
L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[Crossref]
W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]
W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: I. Identification of N-lines,” J. Lumin. 26(1-2), 53–66 (1981).
[Crossref]
W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[Crossref]
W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Partial spectra,” J. Lumin. 26(1-2), 85–98 (1983).
[Crossref]
J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1981).
[Crossref]
W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]
A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[Crossref]
A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]
R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[Crossref]
[PubMed]
R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
[Crossref]
D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[Crossref]
Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref]
[PubMed]
A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[Crossref]
A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]
I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]
Q. le Masne de Chermont, D. Scherman, M. Bessodes, F. Pellé, S. Maitrejean, J-P. Jolivet, C. Chanéac, D. Gourier, “Nanoparticules à luminescence persistante pour leur utilisation en tant qu'agent de diagnostique destiné à l'imagerie optique in vivo,” CNRS patent, internat. ext. WOEP06067950, WO2007048856, 30/10/2006.