Abstract

ZnGa2O4:Cr3+ is shown to be a new bright red UV excited long-lasting phosphor potentially suitable for in vivo imaging due to its 650 nm-750 nm emission range. Photoluminescence and X-ray excited radioluminescence show the 2E → 4A2 emission lines of both ideal Cr3+ and Cr3+ distorted by a neighboring antisite defect while long-lasting phosphorescence (LLP) and thermally stimulated luminescence (TSL) almost exclusively occur via distorted Cr3+. The most intense LLP is obtained with a nominal Zn deficiency and is related to a TSL peak at 335K. A mechanism for LLP and TSL is proposed, whereby the antisite defect responsible for the distortion at Cr3+ acts as a deep trap.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
    [CrossRef] [PubMed]
  2. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
    [CrossRef] [PubMed]
  3. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
    [CrossRef] [PubMed]
  4. Q. le Masne de Chermont, D. Scherman, M. Bessodes, F. Pellé, S. Maitrejean, J-P. Jolivet, C. Chanéac, D. Gourier, “Nanoparticules à luminescence persistante pour leur utilisation en tant qu'agent de diagnostique destiné à l'imagerie optique in vivo,” CNRS patent, internat. ext. WOEP06067950, WO2007048856, 30/10/2006.
  5. I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
    [CrossRef]
  6. I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
    [CrossRef]
  7. S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
    [CrossRef]
  8. L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
    [CrossRef]
  9. P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
    [CrossRef]
  10. D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
    [CrossRef]
  11. R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25(5), 925–946 (1969).
    [CrossRef]
  12. H. M. Kahan and R. M. Macfarlane, “Optical and microwave spectra of Cr3+ in the spinel ZnGa2O4,” J. Chem. Phys. 54(12), 5197–5205 (1971).
    [CrossRef]
  13. W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
    [CrossRef]
  14. W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: I. Identification of N-lines,” J. Lumin. 26(1-2), 53–66 (1981).
    [CrossRef]
  15. W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
    [CrossRef]
  16. W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Partial spectra,” J. Lumin. 26(1-2), 85–98 (1983).
    [CrossRef]
  17. J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1981).
    [CrossRef]
  18. W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
    [CrossRef]
  19. R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
    [CrossRef]
  20. G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
    [CrossRef]
  21. A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
    [CrossRef]
  22. A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
    [CrossRef]
  23. A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
    [CrossRef]
  24. A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
    [CrossRef]
  25. K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
    [CrossRef]

2011 (1)

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[CrossRef]

2010 (3)

A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[CrossRef]

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[CrossRef]

2009 (3)

P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[CrossRef]

D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[CrossRef]

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[CrossRef]

2008 (1)

G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
[CrossRef]

2007 (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

2006 (1)

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[CrossRef] [PubMed]

2003 (1)

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

1998 (1)

I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[CrossRef]

1997 (1)

K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[CrossRef]

1994 (2)

I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[CrossRef]

L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[CrossRef]

1991 (1)

S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[CrossRef]

1990 (1)

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[CrossRef]

1983 (1)

W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Partial spectra,” J. Lumin. 26(1-2), 85–98 (1983).
[CrossRef]

1981 (3)

J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1981).
[CrossRef]

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: I. Identification of N-lines,” J. Lumin. 26(1-2), 53–66 (1981).
[CrossRef]

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[CrossRef]

1979 (1)

R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
[CrossRef]

1971 (1)

H. M. Kahan and R. M. Macfarlane, “Optical and microwave spectra of Cr3+ in the spinel ZnGa2O4,” J. Chem. Phys. 54(12), 5197–5205 (1971).
[CrossRef]

1969 (1)

R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25(5), 925–946 (1969).
[CrossRef]

Aït Benhamou, R.

A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[CrossRef]

Anoop, G.

G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
[CrossRef]

Bessière, A.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[CrossRef]

A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[CrossRef]

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[CrossRef]

Bessodes, M.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Bos, A. J. J.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[CrossRef]

Boulon, G.

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[CrossRef]

Brown, J. J.

L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[CrossRef]

Chanéac, C.

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[CrossRef]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Chen, Z.

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[CrossRef]

Chu, K. T.

I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[CrossRef]

Craig, J.

R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
[CrossRef]

Datta, R. K.

L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[CrossRef]

Daul, C.

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[CrossRef]

Derkosch, J.

J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1981).
[CrossRef]

Dhak, P.

P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[CrossRef]

Dorenbos, P.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[CrossRef]

Endo, T.

K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[CrossRef]

Errandonea, D.

D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[CrossRef]

Feng, M. S.

I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[CrossRef]

Gayen, U. K.

P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[CrossRef]

Gibbs, G. V.

R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
[CrossRef]

Gourier, D.

A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[CrossRef]

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[CrossRef]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Hill, R.

R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
[CrossRef]

Hsieh, I. J.

I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[CrossRef]

Itoh, S.

S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[CrossRef]

Jacquart, S.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[CrossRef]

Jayaraj, M. K.

G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
[CrossRef]

Jeong, I. K.

I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[CrossRef]

Jolivet, J. P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Kahan, H. M.

H. M. Kahan and R. M. Macfarlane, “Optical and microwave spectra of Cr3+ in the spinel ZnGa2O4,” J. Chem. Phys. 54(12), 5197–5205 (1971).
[CrossRef]

Kishino, T.

S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[CrossRef]

Kumar, R. S.

D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[CrossRef]

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Lecointre, A.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[CrossRef]

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[CrossRef]

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[CrossRef]

LeMasne, Q.

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[CrossRef]

Linares, C.

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[CrossRef]

Macfarlane, R. M.

H. M. Kahan and R. M. Macfarlane, “Optical and microwave spectra of Cr3+ in the spinel ZnGa2O4,” J. Chem. Phys. 54(12), 5197–5205 (1971).
[CrossRef]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Manjón, F. J.

D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[CrossRef]

Maruyama, T.

K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[CrossRef]

Mho, S.

I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[CrossRef]

Michel-Calendini, F. M.

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[CrossRef]

Mikenda, W.

W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Partial spectra,” J. Lumin. 26(1-2), 85–98 (1983).
[CrossRef]

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: I. Identification of N-lines,” J. Lumin. 26(1-2), 53–66 (1981).
[CrossRef]

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[CrossRef]

J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1981).
[CrossRef]

Mini Krishna, K.

G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
[CrossRef]

Mishra, S.

P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[CrossRef]

Morimoto, K.

S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[CrossRef]

Nie, W.

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

Park, H. L.

I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[CrossRef]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Pramanik, P.

P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[CrossRef]

Preisinger, A.

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[CrossRef]

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: I. Identification of N-lines,” J. Lumin. 26(1-2), 53–66 (1981).
[CrossRef]

Prewitt, C. T.

R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25(5), 925–946 (1969).
[CrossRef]

Roy, A.

P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[CrossRef]

Rusu, E. V.

D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[CrossRef]

Sato, Y.

S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[CrossRef]

Scherman, D.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Seguin, J.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Shannon, R. D.

R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25(5), 925–946 (1969).
[CrossRef]

Shea, L. E.

L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[CrossRef]

Takisawa, H.

K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[CrossRef]

Toki, H.

S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[CrossRef]

Uheda, K.

K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[CrossRef]

Ursaki, V. V.

D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[CrossRef]

Viana, B.

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[CrossRef]

A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[CrossRef]

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[CrossRef]

Wang, T.

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[CrossRef]

Weissleder, R.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

Yu, C. F.

I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[CrossRef]

Zhang, J.

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[CrossRef]

Zhang, W.

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[CrossRef]

Zheng, S.

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[CrossRef]

Acta Crystallogr. B (1)

R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25(5), 925–946 (1969).
[CrossRef]

Annu. Rev. Biomed. Eng. (1)

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[CrossRef] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

G. Anoop, K. Mini Krishna, and M. K. Jayaraj, “Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films,” Appl. Phys., A Mater. Sci. Process. 90(4), 711–715 (2008).
[CrossRef]

J. Alloy. Comp. (1)

K. Uheda, T. Maruyama, H. Takisawa, and T. Endo, “Synthesis and long-period phosphorescence of ZnGa2O4: Mn2+ spinel,” J. Alloy. Comp. 262–263, 60–64 (1997).
[CrossRef]

J. Appl. Phys. (2)

P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, “Optical emission spectra of chromium doped nanocrystalline zinc gallate,” J. Appl. Phys. 106(6), 063721 (2009).
[CrossRef]

I. J. Hsieh, K. T. Chu, C. F. Yu, and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys. 76(6), 3735–3739 (1994).
[CrossRef]

J. Chem. Phys. (1)

H. M. Kahan and R. M. Macfarlane, “Optical and microwave spectra of Cr3+ in the spinel ZnGa2O4,” J. Chem. Phys. 54(12), 5197–5205 (1971).
[CrossRef]

J. Electrochem. Soc. (2)

S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence,” J. Electrochem. Soc. 138(5), 1509–1512 (1991).
[CrossRef]

L. E. Shea, R. K. Datta, and J. J. Brown, “Photoluminescence of Mn2+-activated ZnGa2O4,” J. Electrochem. Soc. 141(7), 1950–1954 (1994).
[CrossRef]

J. Lumin. (7)

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[CrossRef]

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: I. Identification of N-lines,” J. Lumin. 26(1-2), 53–66 (1981).
[CrossRef]

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[CrossRef]

W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: III. Partial spectra,” J. Lumin. 26(1-2), 85–98 (1983).
[CrossRef]

J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1981).
[CrossRef]

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[CrossRef]

A. Lecointre, B. Viana, Q. LeMasne, A. Bessière, C. Chanéac, and D. Gourier, “Red long-lasting luminescence in Clinoenstatite,” J. Lumin. 129(12), 1527–1530 (2009).
[CrossRef]

J. Phys. Chem. C (1)

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[CrossRef]

Nat. Med. (1)

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

Phys. Chem. Miner. (1)

R. Hill, J. Craig, and G. V. Gibbs, “Systematics of the spinel structure type,” Phys. Chem. Miner. 4(4), 317–339 (1979).
[CrossRef]

Phys. Rev. B (1)

D. Errandonea, R. S. Kumar, F. J. Manjón, V. V. Ursaki, and E. V. Rusu, “Post-spinel transformations and equation of state in ZnGa2O4: Determination at high pressure by in situ x-ray diffraction,” Phys. Rev. B 79(2), 024103 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Radiat. Meas. (2)

A. Lecointre, A. Bessière, B. Viana, R. Aït Benhamou, and D. Gourier, “Thermally stimulated luminescence of Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu),” Radiat. Meas. 45(3-6), 273–276 (2010).
[CrossRef]

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

Solid State Commun. (1)

I. K. Jeong, H. L. Park, and S. Mho, “Two self-activated optical centers of blue emission in zinc gallate,” Solid State Commun. 105(3), 179–183 (1998).
[CrossRef]

Other (1)

Q. le Masne de Chermont, D. Scherman, M. Bessodes, F. Pellé, S. Maitrejean, J-P. Jolivet, C. Chanéac, D. Gourier, “Nanoparticules à luminescence persistante pour leur utilisation en tant qu'agent de diagnostique destiné à l'imagerie optique in vivo,” CNRS patent, internat. ext. WOEP06067950, WO2007048856, 30/10/2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

PL spectra excited at 247 nm of Zn-d, Zn-s and Zn-e ZnGa2O4:Cr3+ compounds. Dotted lines show the attribution of Cr3+ lines in ZnGa2O4:Cr3+ at 13K according to Zhang et al. [13].

Fig. 2
Fig. 2

LLP decays of Zn-d, Zn-s and Zn-e ZnGa2O4:Cr3+ compounds at 705 nm and of the silicate reference at 695 nm recorded at 303 K after 5 minutes UV excitation. Inset: normalized LLP spectra of ZnGa2O4:Cr3+ compounds 45 s after the end of the excitation.

Fig. 3
Fig. 3

XRL and XLLP spectra of Zn-d ZnGa2O4:Cr3+ at 293 K.

Fig. 4
Fig. 4

(a) TSL of Zn-d ZnGa2O4:Cr3+ at 694 nm after 5 minutes UV excitation. Inset: TSL spectrum at 318 K with reduced slitwidths. (b) TSL spectra at the beginning of the TSL curve (A) and at the main TSL peak maxima (B, C and D).

Metrics