Abstract

We numerically investigate mid-infrared supercontinuum generation in single mode fluoride fiber pumped by 1.56 μm picosecond fiber lasers. To get high energy conversion efficiency in mid-infrared region, the ratio of power generated in 2.5 ~5 μm range to the total input power for supercontinuum generation is optimized by varying the pulse width, peak power and fiber length. The long wavelength edge of the supercontinuum spectrum can be extended to 4.8 μm in a 100 cm long fluoride fiber pumped by a 1.56 μm fiber laser with a pulse width of 4 ps and a peak power of 100 kW, and the corresponding ratio of power generated in 2.5 ~5 μm range to the total input power is about 44.6%. The spectral broadening is mainly caused by self-phase modulation, stimulated Raman scattering and four-wave mixing. The simulated results show that high average power supercontinuum light source in 2.5 ~5 μm range could be obtained in fluoride fibers pumped by 1.56 μm picosecond fiber lasers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
  3. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [PubMed]
  4. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16(18), 13651–13656 (2008).
    [PubMed]
  5. G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35(2), 136–138 (2010).
    [PubMed]
  6. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97(6), 061106 (2010).
  7. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [PubMed]
  8. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass–fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
  9. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
    [PubMed]
  10. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Computational study of 3-5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm,” Opt. Lett. 35(17), 2907–2909 (2010).
    [PubMed]
  11. C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).
  12. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontimuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
    [PubMed]
  13. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).
  14. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
  15. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), 459–468 (1996).
  16. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic. Press, 2009).
  17. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19(12), 2886–2892 (2002).
  18. Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fiber,” Electron. Lett. 21(17), 723–724 (1985).
  19. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25(12), 3770–3775 (2007).
  20. D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).

2010

2009

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass–fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).

2008

2007

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontimuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[PubMed]

2002

1998

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).

1996

1985

Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fiber,” Electron. Lett. 21(17), 723–724 (1985).

1984

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).

Aggarwal, I. D.

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).

Bang, O.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97(6), 061106 (2010).

Bendow, B.

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).

Buccoliero, D.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97(6), 061106 (2010).

Camerlingo, A.

Cantrell, C. D.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

Cordeiro, C. M. B.

Cronin-Golomb, M.

Dasgupta, S.

Domachuk, P.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

Durteste, Y.

Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fiber,” Electron. Lett. 21(17), 723–724 (1985).

Ebendorff-Heidepriem, H.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97(6), 061106 (2010).

Eggleton, B. J.

Feit, M. D.

Feng, X.

Flanagan, J. C.

Frampton, K. E.

Freeman, M. J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontimuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[PubMed]

Fu, L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

George, A. K.

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).

Herman, S.

Hollenbeck, D.

Horak, P.

Hu, J.

Hult, J.

Islam, M. N.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontimuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[PubMed]

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35(2), 136–138 (2010).
[PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).

Knight, J. C.

Kulkarni, O. P.

Kumar, M.

Lamont, M. R. E.

Lamouler, P.

Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fiber,” Electron. Lett. 21(17), 723–724 (1985).

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35(2), 136–138 (2010).
[PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).

Loh, W. H.

Mägi, E. C.

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).

Mazé, G.

Menyuk, C. R.

Monerie, M.

Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fiber,” Electron. Lett. 21(17), 723–724 (1985).

Monro, T. M.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97(6), 061106 (2010).

Mori, A.

Ohishi, Y.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35(2), 136–138 (2010).
[PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).

Omenetto, F. G.

Perry, M. D.

Petropoulos, P.

Poulain, M.

Price, J. H.

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35(2), 136–138 (2010).
[PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).

Richardson, D. J.

Roelens, M. A. F.

Rubenchik, A. M.

Rutt, H. N.

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).

Sanghera, J. S.

Shaw, L. B.

Shore, B. W.

Sigel, G.

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).

Steffensen, H.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97(6), 061106 (2010).

Stuart, B. C.

Suzuki, T.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35(2), 136–138 (2010).
[PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).

Terry, F. L.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontimuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[PubMed]

Tran, D.

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).

Wang, A.

White, N. M.

Wolchover, N. A.

Xia, C.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontimuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[PubMed]

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, T. Suzuki, A. Mori, and Y. Ohishi, “Zero-dispersion-wavelength-decreasing tellurite microstructured fiber for wide and flattened supercontinuum generation,” Opt. Lett. 35(2), 136–138 (2010).
[PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).

Yeom, D. I.

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).

Appl. Phys. Lett.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97(6), 061106 (2010).

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).

Electron. Lett.

Y. Durteste, M. Monerie, and P. Lamouler, “Raman amplification in fluoride glass fiber,” Electron. Lett. 21(17), 723–724 (1985).

IEEE J. Sel. Top. Quantum Electron.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15(2), 422–434 (2009).

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass–fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).

IEEE Photon. Technol. Lett.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18(1), 91–93 (2006).

J. Lightwave Technol.

J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25(12), 3770–3775 (2007).

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984).

J. Opt. Soc. Am. B

Meas. Sci. Technol.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).

Opt. Express

Opt. Lett.

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

Other

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic. Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Calculated dispersion data of the fundamental propagating mode in the fluoride fiber we used. (b) The transmission loss of fluoride fiber we used.

Fig. 2
Fig. 2

Simulated output pulse profiles from a 70 cm long fluoride fiber pumped by a 1.56 μm fiber laser with a pulse width of 4 ps and a peak power of (a) 10 kW, (b) 20 kW, (c) 30 kW, (d) 40 kW, (e) 100 kW, and (f) 200kW.

Fig. 3
Fig. 3

Simulated SC spectra output from a 70 cm long fluoride fiber pumped by a 1.56 μm fiber laser with a pulse width of 4 ps and a peak power of (a) 10 kW, (b) 20 kW, (c) 30 kW, (d) 40 kW, (e) 100 kW, and (f) 200kW by considering the transmission loss of fluoride fiber. The red curves in Fig. 3 shows the simulated data without considering the transmission loss of fluoride fiber.

Fig. 4
Fig. 4

Simulated (a) temporal and (b) spectral evolution of SC generation in a 70-cm-long fluoride fiber when pumped at 1.56 μm with a pulse width of 4 ps and a peak power of 200 kW .

Fig. 5
Fig. 5

Dependence of the ratio of power generated in the mid-infrared region (>2.5 μm) on the pump peak power for SC generation in the 70-cm-long fluoride fiber pumped by a 1.56 μm fiber with a pulse width of 4ps.

Fig. 6
Fig. 6

The dependence of the ratio of power generated in the mid-infrared region (>2.5 μm) on the fiber length and the pump pulse width.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A z = α 2 A ( k 2 β n i n 1 n ! n T n ) A + i γ ( A | A | 2 + i ω 0 T ( | A | 2 A ) f R A | A | 2 T t h ( t ) d t ) ,
T = t z / v g = t β 1 z ,
g R ( Δ ω ) = ω 0 c n 0 f R χ ( 3 ) Im [ h ˜ R ( Δ ω ) ] ,
h R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) .
A ( 0 , T ) = P 0 sec h ( T T 0 ) ,
T F W H M = 1.763 T 0 .

Metrics