Abstract

The extraordinary spectral sensitivity of surface plasmon resonance (SPR) sensors is commonly attributed to the modal overlap or unique dispersion of surface plasmons. In contrast to this belief, we show that such high sensitivity is due to the multi-mode nature of the sensing scheme. This concept of multi-mode sensing can be applied to dielectric systems as well in order to achieve similar extraordinary spectral sensitivity. We also show that there is a fundamental constraint between the spectral sensitivity and quality factor in such multi-mode sensing approach.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6(3), 215–225 (1991).
    [CrossRef]
  2. B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
    [CrossRef] [PubMed]
  3. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
    [CrossRef] [PubMed]
  4. V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
    [CrossRef] [PubMed]
  5. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
    [CrossRef] [PubMed]
  6. R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
    [CrossRef]
  7. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
    [CrossRef] [PubMed]
  8. C. L. Baird and D. G. Myszka, “Current and emerging commercial optical biosensors,” J. Mol. Recognit. 14(5), 261–268 (2001).
    [CrossRef] [PubMed]
  9. J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 207–211 (1997).
    [CrossRef]
  10. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  11. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  12. G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
    [CrossRef]
  13. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
    [CrossRef]
  14. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
    [CrossRef]
  15. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
    [CrossRef]
  16. A. Artar, A. A. Yanik, and H. Altug, “Fabry–Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
    [CrossRef]
  17. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [CrossRef]
  18. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
    [CrossRef]
  19. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [CrossRef] [PubMed]
  20. M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
    [CrossRef] [PubMed]
  21. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
    [CrossRef]
  22. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [CrossRef]
  23. C. Chung-Yen, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quant. Electron. 12(1), 134–142 (2006).
    [CrossRef]
  24. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  25. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
    [CrossRef]
  26. H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sens. Actuators B Chem. 87(2), 244–249 (2002).
    [CrossRef]
  27. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  28. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  29. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [CrossRef]
  30. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  31. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light, 2 ed. pp.18 (Princeton University Press, Princeton, New Jersey, 2008).
  32. A. Raman, and S. Fan, “Perturbation theory for plasmonic modulation and sensing,” under review (2010).
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]

2010 (2)

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

2009 (3)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[CrossRef]

A. Artar, A. A. Yanik, and H. Altug, “Fabry–Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

2008 (3)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

2007 (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

2006 (2)

C. Chung-Yen, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quant. Electron. 12(1), 134–142 (2006).
[CrossRef]

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

2005 (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

2004 (1)

2003 (2)

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

2002 (4)

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sens. Actuators B Chem. 87(2), 244–249 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

2001 (2)

C. L. Baird and D. G. Myszka, “Current and emerging commercial optical biosensors,” J. Mol. Recognit. 14(5), 261–268 (2001).
[CrossRef] [PubMed]

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1997 (2)

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 207–211 (1997).
[CrossRef]

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[CrossRef] [PubMed]

1993 (1)

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[CrossRef]

1991 (2)

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6(3), 215–225 (1991).
[CrossRef]

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[CrossRef] [PubMed]

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Agarwal, A.

Aldridge, J. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Fabry–Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Anthes-Washburn, M.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Fabry–Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Baird, C. L.

C. L. Baird and D. G. Myszka, “Current and emerging commercial optical biosensors,” J. Mol. Recognit. 14(5), 261–268 (2001).
[CrossRef] [PubMed]

Chbouki, N.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Chow, E.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chung-Yen, C.

C. Chung-Yen, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quant. Electron. 12(1), 134–142 (2006).
[CrossRef]

Cooper, M. A.

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
[CrossRef] [PubMed]

Cronin, J. M.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[CrossRef]

Cunningham, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Cush, R.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[CrossRef]

Dancil, K.-P. S.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Desai, T. A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

El Beheiry, M.

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Fan, S.

Fan, X.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

Fung, W.

C. Chung-Yen, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quant. Electron. 12(1), 134–142 (2006).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Ghadiri, M. R.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Gill, D.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Girolami, G.

Goddard, N. J.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[CrossRef]

Goldberg, B. B.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Grot, A.

Guo, L. J.

C. Chung-Yen, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quant. Electron. 12(1), 134–142 (2006).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Homola, J.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 207–211 (1997).
[CrossRef]

Hryniewicz, J.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Hu, J.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Johnsson, B.

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[CrossRef] [PubMed]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Käll, M.

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sens. Actuators B Chem. 87(2), 244–249 (2002).
[CrossRef]

Kimerling, L. C.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Levi, O.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Li, P.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[CrossRef] [PubMed]

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Lin, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Lin, V. S.-Y.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Lindquist, G.

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[CrossRef] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Little, B. E.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Liu, V.

Löfås, S.

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[CrossRef] [PubMed]

Loncar, M.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Lukosz, W.

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6(3), 215–225 (1991).
[CrossRef]

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[CrossRef] [PubMed]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Maule, C. H.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[CrossRef]

Mirkarimi, L. W.

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Molloy, J.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[CrossRef]

Motesharei, K.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Myszka, D. G.

C. L. Baird and D. G. Myszka, “Current and emerging commercial optical biosensors,” J. Mol. Recognit. 14(5), 261–268 (2001).
[CrossRef] [PubMed]

Nenninger, G. G.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[CrossRef] [PubMed]

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Oliver, K.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

Pepper, J.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Popat, K. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Qiu, Y.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Sai, C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Sailor, M. J.

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Scherer, A.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Schultz, S.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sigalas, M.

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Stewart, W. J.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[CrossRef]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

Sun, X.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tobiska, P.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

Unlu, M. S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Van, V.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Xu, H.

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sens. Actuators B Chem. 87(2), 244–249 (2002).
[CrossRef]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yalcin, A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Fabry–Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yee, S. S.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

Anal. Biochem. (1)

B. Johnsson, S. Löfås, and G. Lindquist, “Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors,” Anal. Biochem. 198(2), 268–277 (1991).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[CrossRef]

A. Artar, A. A. Yanik, and H. Altug, “Fabry–Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Biosens. Bioelectron. (3)

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6(3), 215–225 (1991).
[CrossRef]

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[CrossRef] [PubMed]

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron. (1)

C. Chung-Yen, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quant. Electron. 12(1), 134–142 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electronics (1)

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, K. Oliver, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electronics 12(1), 148–155 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

J. Mol. Recognit. (1)

C. L. Baird and D. G. Myszka, “Current and emerging commercial optical biosensors,” J. Mol. Recognit. 14(5), 261–268 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Nat. Mater. (2)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Nat. Rev. Drug Discov. (1)

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov. 1(7), 515–528 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Science (1)

V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators 4, 299–304 (1983).
[CrossRef]

Sens. Actuators B Chem. (5)

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 207–211 (1997).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sens. Actuators B Chem. 87(2), 244–249 (2002).
[CrossRef]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light, 2 ed. pp.18 (Princeton University Press, Princeton, New Jersey, 2008).

A. Raman, and S. Fan, “Perturbation theory for plasmonic modulation and sensing,” under review (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of a surface plasmon resonance sensor. (b) Reflectivity spectra when the index perturbation Δ n = 0.001 is absent (blue) and present (red). The index change is applied to the sensing region (assumed to be air) above the silver film.

Fig. 2
Fig. 2

(a) Schematic of a Fabry-Perot cavity senor. (b) Transmission spectra when the index perturbation Δ n = 0.035 is absent (blue) and present (red).The index change is applied to the whole cavity excluding the mirrors.

Fig. 3
Fig. 3

Analysis of the SPR sensor. (a) Blue line is the dispersion relation for the surface plasmon mode at the metal-air interface. Red line represents the dispersion relation of the surface plasmon mode at the same interface when a small index perturbation is applied to the air region. Gray line is the dispersion relation of the propagation wave inside the prism. k p = ω p / c and λ p = 2 π / k p , where ω p is the plasmon frequency of the metal. (b) The group index (blue) and phase index (red) of the surface plasmon modes. In order to achieve a resonance at a given wavelength, the group index of the probe is chosen to match the phase index of the surface plasmon. (c) and (d) Normalized spectral sensitivity (c) and spectral sensitivity (d) as a function of operation wavelength for SPP sensor.

Fig. 4
Fig. 4

Dielectric waveguide sensor with extraordinary sensitivity. (a) Schematic of the sensor structure, consisting of a dielectric waveguide (gray region) separated from the top surface of the prism with an air gap. (b) Reflection spectra of the structure vary from the blue curve to the red curve, as an index perturbation Δ n = 10 5 is applied to the dielectric waveguide.

Fig. 5
Fig. 5

(a) The black curve is the dispersion curve of the fundamental mode for a slab waveguide with a thickness of a and an index of n=1.5. The red curve is the dispersion curve of the probing light in the prism. (b) Group indices (blue line) and phase index (red line) of the dielectric waveguide. (c) Normalized spectral sensitivity for different operating frequency. (d) The spectral sensitivity for waveguides with different thicknesses.

Fig. 6
Fig. 6

(a) Design of the dispersion relation of the probes. The black solid and dashed curves correspond to the waveguide dispersion relations without or with index perturbations, respectively. The blue and green curves are the dispersion relations for the probe waves, having different group indices nd =1 (green curve), and nd =0.75(blue), respectively. (b) Incident angle as a function of incident light frequency for the two different probe waves shown in (a).

Fig. 7
Fig. 7

(a) Spectral sensitivity for different probe indices. Red dots are from numerical simulations. (b-d) The shift of reflection spectra with different probe indices: nd =0.75 (b), nd =1.45(c), and nd = 1.5(d).

Fig. 8
Fig. 8

(a) The dispersion diagram showing the width of waveguide resonance Δ ω and the apparent width Δ Ω in the reflection spectra. The upper (lower) grey line is the dispersion curve of the waveguide mode without (with) an index perturbation, respectively. The red line represents the dispersion curve of the probe light. (d) The relation between the sensitivity and quality factor for the same sensor structure shown in Fig. 4a, but with different probe indices. Red dots are from simulation and they follow a linear relation in the logarithm plot.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ ω = ω 2 d 3 r Δ ε ( r ) | E ( r ) | 2 d 3 r ε ( r ) | E ( r ) | 2
Δ λ λ = Δ ω ω Δ n n
S λ n
S N = d λ / λ d n / n
k i = sin ( θ ) n p r i s m c ω
k i ( ω ) = k s ( ω , n )
d ω d n = k s / n d k i / d ω k s / ω
S = d λ d n = λ 2 2 π c d ω d n = λ 2 2 π k s n 1 n g n g i
n g i c d ω / d k i = n p r i s m sin θ
k = n p r i s m sin ( θ ) ω c n g i ω c
k k 0 = n d ( ω ω 0 ) / c
θ ( ω ) = arcsin ( n d ( ω ω 0 ) + c k 0 n p r i s m ω )
Δ Ω = n g n g n d Δ ω
S Q = λ Δ ω k s n 1 n g

Metrics