Abstract

An efficient electron transporting material, P-OXD (1,3-bis[(4-(4-diethylphosphoryl-butyl-phenyl))-1,3,4-oxidiazol-2-yl]phenylene), has been synthesized and thoroughly characterized. Due to its alcohol-soluble nature, P-OXD can be spin-coated atop the light emitting layer to form high quality film without dissolving the underlying layer. As a consequence, the double-layer blue electrophosphorescent device has been successfully fabricated, giving a peak luminous efficiency of 10.5 cd/A, and a maximum brightness of 8200 cd/m2 with the Commission Internationale de L’Eclairage (CIE) coordinates of (0.16, 0.33). The promising results indicate that P-OXD has a potential application in solution-processed multilayer polymer light-emitting diodes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998).
    [CrossRef]
  2. I. D. Parker, Y. Cao, and C. Y. Yang, “Lifetime and degradation effects in polymer light-emitting diodes,” J. Appl. Phys.85(4), 2441–2447 (1999).
    [CrossRef]
  3. T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
    [CrossRef]
  4. F. So and D. Kondakov, “Degradation mechanisms in small-molecule and polymer organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)22(34), 3762–3777 (2010).
    [CrossRef] [PubMed]
  5. C. V. Hoven, A. Garcia, G. C. Bazan, and T.-Q. Nguyen, “Recent Applications of conjugated polyelectrolytes in optoelectronic devices,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3793–3810 (2008).
    [CrossRef]
  6. H. Jiang, P. Taranekar, J. R. Reynolds, and K. S. Schanze, “Conjugated polyelectrolytes: synthesis, photophysics, and applications,” Angew. Chem. Int. Ed. Engl.48(24), 4300–4316 (2009).
    [CrossRef] [PubMed]
  7. F. Huang, H. Wu, and Y. Cao, “Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices,” Chem. Soc. Rev.39(7), 2500–2521 (2010).
    [CrossRef] [PubMed]
  8. C. Zhong, C. Duan, F. Huang, H. Wu, and Y. Cao, “Materials and devices toward fully solution processable organic light-emitting diodes,” Chem. Mater.23(3), 326–340 (2011).
    [CrossRef]
  9. C. Duan, L. Wang, K. Zhang, X. Guan, and F. Huang, “Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1665–1669 (2011).
    [CrossRef] [PubMed]
  10. J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
    [CrossRef] [PubMed]
  11. X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2,7-Carbazole-1,4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules44(11), 4204–4212 (2011).
    [CrossRef]
  12. F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, and A. K. Y. Jen, “A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(15), 2010–2014 (2007).
    [CrossRef]
  13. X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, “Multilayer polymer light-emitting diodes: White-light emission with high efficiency,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2053–2058 (2005).
    [CrossRef]
  14. R. Yang, Y. Xu, X.-D. Dang, T.-Q. Nguyen, Y. Cao, and G. C. Bazan, “Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices,” J. Am. Chem. Soc.130(11), 3282–3283 (2008).
    [CrossRef] [PubMed]
  15. T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, and F. Wudl, “Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives,” Chem. Commun. (Camb.)46(43), 8210–8212 (2010).
    [CrossRef] [PubMed]
  16. A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron transport materials for organic light-emitting diodes,” Chem. Mater.16(23), 4556–4573 (2004).
    [CrossRef]
  17. G. Hughes and M. R. Bryce, “Electron-transporting materials for organic electroluminescent and electrophosphorescent devices,” J. Mater. Chem.15(1), 94–107 (2005).
    [CrossRef]
  18. X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett.88(2), 021107 (2006).
    [CrossRef]
  19. B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010).
    [CrossRef]
  20. L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Twofold terminal post-functionalization of acetylacetone with hole- and electron-transporting fragments,” Tetrahedron Lett.51(35), 4612–4616 (2010).
    [CrossRef]
  21. T. Beissel, R. E. Powers, T. N. Parac, and K. N. Raymond, “Coordination number incommensurate cluster formation. 8. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster,” J. Am. Chem. Soc.121(17), 4200–4206 (1999).
    [CrossRef]
  22. C. S. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce, and M. C. Petty, “New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids,” J. Mater. Chem.12(2), 173–180 (2002).
    [CrossRef]
  23. K. Meerholz, “Device physics: enlightening solutions,” Nature437(7057), 327–328 (2005).
    [CrossRef] [PubMed]
  24. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
    [CrossRef]
  25. F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, and A. K. Y. Jen, “Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer,” Adv. Mater. (Deerfield Beach Fla.)21(3), 361–365 (2009).
    [CrossRef]
  26. V. E. Choong, M. G. Mason, C. W. Tang, and Y. G. Gao, “Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum,” Appl. Phys. Lett.72(21), 2689–2691 (1998).
    [CrossRef]
  27. Q. T. Le, L. Yan, Y. G. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces,” J. Appl. Phys.87(1), 375–379 (2000).
    [CrossRef]
  28. M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
    [CrossRef]

2011 (4)

C. Zhong, C. Duan, F. Huang, H. Wu, and Y. Cao, “Materials and devices toward fully solution processable organic light-emitting diodes,” Chem. Mater.23(3), 326–340 (2011).
[CrossRef]

C. Duan, L. Wang, K. Zhang, X. Guan, and F. Huang, “Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1665–1669 (2011).
[CrossRef] [PubMed]

J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
[CrossRef] [PubMed]

X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2,7-Carbazole-1,4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules44(11), 4204–4212 (2011).
[CrossRef]

2010 (5)

F. So and D. Kondakov, “Degradation mechanisms in small-molecule and polymer organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)22(34), 3762–3777 (2010).
[CrossRef] [PubMed]

F. Huang, H. Wu, and Y. Cao, “Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices,” Chem. Soc. Rev.39(7), 2500–2521 (2010).
[CrossRef] [PubMed]

T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, and F. Wudl, “Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives,” Chem. Commun. (Camb.)46(43), 8210–8212 (2010).
[CrossRef] [PubMed]

B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010).
[CrossRef]

L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Twofold terminal post-functionalization of acetylacetone with hole- and electron-transporting fragments,” Tetrahedron Lett.51(35), 4612–4616 (2010).
[CrossRef]

2009 (3)

F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, and A. K. Y. Jen, “Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer,” Adv. Mater. (Deerfield Beach Fla.)21(3), 361–365 (2009).
[CrossRef]

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

H. Jiang, P. Taranekar, J. R. Reynolds, and K. S. Schanze, “Conjugated polyelectrolytes: synthesis, photophysics, and applications,” Angew. Chem. Int. Ed. Engl.48(24), 4300–4316 (2009).
[CrossRef] [PubMed]

2008 (2)

R. Yang, Y. Xu, X.-D. Dang, T.-Q. Nguyen, Y. Cao, and G. C. Bazan, “Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices,” J. Am. Chem. Soc.130(11), 3282–3283 (2008).
[CrossRef] [PubMed]

C. V. Hoven, A. Garcia, G. C. Bazan, and T.-Q. Nguyen, “Recent Applications of conjugated polyelectrolytes in optoelectronic devices,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3793–3810 (2008).
[CrossRef]

2007 (1)

F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, and A. K. Y. Jen, “A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(15), 2010–2014 (2007).
[CrossRef]

2006 (1)

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett.88(2), 021107 (2006).
[CrossRef]

2005 (3)

G. Hughes and M. R. Bryce, “Electron-transporting materials for organic electroluminescent and electrophosphorescent devices,” J. Mater. Chem.15(1), 94–107 (2005).
[CrossRef]

X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, “Multilayer polymer light-emitting diodes: White-light emission with high efficiency,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2053–2058 (2005).
[CrossRef]

K. Meerholz, “Device physics: enlightening solutions,” Nature437(7057), 327–328 (2005).
[CrossRef] [PubMed]

2004 (1)

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron transport materials for organic light-emitting diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

2003 (1)

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

2002 (1)

C. S. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce, and M. C. Petty, “New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids,” J. Mater. Chem.12(2), 173–180 (2002).
[CrossRef]

2000 (2)

Q. T. Le, L. Yan, Y. G. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces,” J. Appl. Phys.87(1), 375–379 (2000).
[CrossRef]

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

1999 (2)

T. Beissel, R. E. Powers, T. N. Parac, and K. N. Raymond, “Coordination number incommensurate cluster formation. 8. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster,” J. Am. Chem. Soc.121(17), 4200–4206 (1999).
[CrossRef]

I. D. Parker, Y. Cao, and C. Y. Yang, “Lifetime and degradation effects in polymer light-emitting diodes,” J. Appl. Phys.85(4), 2441–2447 (1999).
[CrossRef]

1998 (2)

M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998).
[CrossRef]

V. E. Choong, M. G. Mason, C. W. Tang, and Y. G. Gao, “Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum,” Appl. Phys. Lett.72(21), 2689–2691 (1998).
[CrossRef]

Babel, A.

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron transport materials for organic light-emitting diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

Baldo, M. A.

M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998).
[CrossRef]

Batsanov, A. S.

C. S. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce, and M. C. Petty, “New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids,” J. Mater. Chem.12(2), 173–180 (2002).
[CrossRef]

Bazan, G. C.

R. Yang, Y. Xu, X.-D. Dang, T.-Q. Nguyen, Y. Cao, and G. C. Bazan, “Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices,” J. Am. Chem. Soc.130(11), 3282–3283 (2008).
[CrossRef] [PubMed]

C. V. Hoven, A. Garcia, G. C. Bazan, and T.-Q. Nguyen, “Recent Applications of conjugated polyelectrolytes in optoelectronic devices,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3793–3810 (2008).
[CrossRef]

X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, “Multilayer polymer light-emitting diodes: White-light emission with high efficiency,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2053–2058 (2005).
[CrossRef]

Beissel, T.

T. Beissel, R. E. Powers, T. N. Parac, and K. N. Raymond, “Coordination number incommensurate cluster formation. 8. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster,” J. Am. Chem. Soc.121(17), 4200–4206 (1999).
[CrossRef]

Blassing, J.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Brown, J. J.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Bryce, M. R.

G. Hughes and M. R. Bryce, “Electron-transporting materials for organic electroluminescent and electrophosphorescent devices,” J. Mater. Chem.15(1), 94–107 (2005).
[CrossRef]

C. S. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce, and M. C. Petty, “New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids,” J. Mater. Chem.12(2), 173–180 (2002).
[CrossRef]

Cao, Y.

X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2,7-Carbazole-1,4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules44(11), 4204–4212 (2011).
[CrossRef]

C. Zhong, C. Duan, F. Huang, H. Wu, and Y. Cao, “Materials and devices toward fully solution processable organic light-emitting diodes,” Chem. Mater.23(3), 326–340 (2011).
[CrossRef]

F. Huang, H. Wu, and Y. Cao, “Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices,” Chem. Soc. Rev.39(7), 2500–2521 (2010).
[CrossRef] [PubMed]

R. Yang, Y. Xu, X.-D. Dang, T.-Q. Nguyen, Y. Cao, and G. C. Bazan, “Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices,” J. Am. Chem. Soc.130(11), 3282–3283 (2008).
[CrossRef] [PubMed]

I. D. Parker, Y. Cao, and C. Y. Yang, “Lifetime and degradation effects in polymer light-emitting diodes,” J. Appl. Phys.85(4), 2441–2447 (1999).
[CrossRef]

Chen, J.

X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2,7-Carbazole-1,4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules44(11), 4204–4212 (2011).
[CrossRef]

Chen, L.

B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010).
[CrossRef]

L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Twofold terminal post-functionalization of acetylacetone with hole- and electron-transporting fragments,” Tetrahedron Lett.51(35), 4612–4616 (2010).
[CrossRef]

Cheng, Y.

L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Twofold terminal post-functionalization of acetylacetone with hole- and electron-transporting fragments,” Tetrahedron Lett.51(35), 4612–4616 (2010).
[CrossRef]

B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010).
[CrossRef]

Chi, Y.

F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, and A. K. Y. Jen, “Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer,” Adv. Mater. (Deerfield Beach Fla.)21(3), 361–365 (2009).
[CrossRef]

Chin, B. D.

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

Choi, T.-L.

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

Choong, V. E.

V. E. Choong, M. G. Mason, C. W. Tang, and Y. G. Gao, “Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum,” Appl. Phys. Lett.72(21), 2689–2691 (1998).
[CrossRef]

Dang, X.-D.

R. Yang, Y. Xu, X.-D. Dang, T.-Q. Nguyen, Y. Cao, and G. C. Bazan, “Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices,” J. Am. Chem. Soc.130(11), 3282–3283 (2008).
[CrossRef] [PubMed]

Ding, J.

B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010).
[CrossRef]

L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Twofold terminal post-functionalization of acetylacetone with hole- and electron-transporting fragments,” Tetrahedron Lett.51(35), 4612–4616 (2010).
[CrossRef]

Duan, C.

C. Duan, L. Wang, K. Zhang, X. Guan, and F. Huang, “Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1665–1669 (2011).
[CrossRef] [PubMed]

C. Zhong, C. Duan, F. Huang, H. Wu, and Y. Cao, “Materials and devices toward fully solution processable organic light-emitting diodes,” Chem. Mater.23(3), 326–340 (2011).
[CrossRef]

Fang, J.

J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
[CrossRef] [PubMed]

Forrest, S. R.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998).
[CrossRef]

Friend, R. H.

J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
[CrossRef] [PubMed]

Gao, F.

J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
[CrossRef] [PubMed]

Gao, Y. G.

Q. T. Le, L. Yan, Y. G. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces,” J. Appl. Phys.87(1), 375–379 (2000).
[CrossRef]

V. E. Choong, M. G. Mason, C. W. Tang, and Y. G. Gao, “Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum,” Appl. Phys. Lett.72(21), 2689–2691 (1998).
[CrossRef]

Garcia, A.

T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, and F. Wudl, “Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives,” Chem. Commun. (Camb.)46(43), 8210–8212 (2010).
[CrossRef] [PubMed]

C. V. Hoven, A. Garcia, G. C. Bazan, and T.-Q. Nguyen, “Recent Applications of conjugated polyelectrolytes in optoelectronic devices,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3793–3810 (2008).
[CrossRef]

Garon, S.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Giesen, D. J.

Q. T. Le, L. Yan, Y. G. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces,” J. Appl. Phys.87(1), 375–379 (2000).
[CrossRef]

Gong, X.

X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, “Multilayer polymer light-emitting diodes: White-light emission with high efficiency,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2053–2058 (2005).
[CrossRef]

Guan, X.

C. Duan, L. Wang, K. Zhang, X. Guan, and F. Huang, “Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1665–1669 (2011).
[CrossRef] [PubMed]

Han, B.

X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2,7-Carbazole-1,4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules44(11), 4204–4212 (2011).
[CrossRef]

Heeger, A. J.

X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, “Multilayer polymer light-emitting diodes: White-light emission with high efficiency,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2053–2058 (2005).
[CrossRef]

Holmes, R. J.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Hoven, C. V.

C. V. Hoven, A. Garcia, G. C. Bazan, and T.-Q. Nguyen, “Recent Applications of conjugated polyelectrolytes in optoelectronic devices,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3793–3810 (2008).
[CrossRef]

Huang, F.

C. Duan, L. Wang, K. Zhang, X. Guan, and F. Huang, “Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1665–1669 (2011).
[CrossRef] [PubMed]

C. Zhong, C. Duan, F. Huang, H. Wu, and Y. Cao, “Materials and devices toward fully solution processable organic light-emitting diodes,” Chem. Mater.23(3), 326–340 (2011).
[CrossRef]

F. Huang, H. Wu, and Y. Cao, “Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices,” Chem. Soc. Rev.39(7), 2500–2521 (2010).
[CrossRef] [PubMed]

F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, and A. K. Y. Jen, “Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer,” Adv. Mater. (Deerfield Beach Fla.)21(3), 361–365 (2009).
[CrossRef]

F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, and A. K. Y. Jen, “A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(15), 2010–2014 (2007).
[CrossRef]

Huck, W. T. S.

J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
[CrossRef] [PubMed]

Hughes, G.

G. Hughes and M. R. Bryce, “Electron-transporting materials for organic electroluminescent and electrophosphorescent devices,” J. Mater. Chem.15(1), 94–107 (2005).
[CrossRef]

Inbasekaran, M.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Jaiser, F.

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett.88(2), 021107 (2006).
[CrossRef]

Jen, A. K. Y.

F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, and A. K. Y. Jen, “Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer,” Adv. Mater. (Deerfield Beach Fla.)21(3), 361–365 (2009).
[CrossRef]

F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, and A. K. Y. Jen, “A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(15), 2010–2014 (2007).
[CrossRef]

Jenekhe, S. A.

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron transport materials for organic light-emitting diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

Jiang, H.

H. Jiang, P. Taranekar, J. R. Reynolds, and K. S. Schanze, “Conjugated polyelectrolytes: synthesis, photophysics, and applications,” Angew. Chem. Int. Ed. Engl.48(24), 4300–4316 (2009).
[CrossRef] [PubMed]

Jing, X.

L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Twofold terminal post-functionalization of acetylacetone with hole- and electron-transporting fragments,” Tetrahedron Lett.51(35), 4612–4616 (2010).
[CrossRef]

Jung, G. Y.

C. S. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce, and M. C. Petty, “New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids,” J. Mater. Chem.12(2), 173–180 (2002).
[CrossRef]

Ka, J.-W.

F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, and A. K. Y. Jen, “A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(15), 2010–2014 (2007).
[CrossRef]

Kim, M.-G.

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

Kim, S. Y.

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

Klausmann, H.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Klinger, S.

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett.88(2), 021107 (2006).
[CrossRef]

Kondakov, D.

F. So and D. Kondakov, “Degradation mechanisms in small-molecule and polymer organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)22(34), 3762–3777 (2010).
[CrossRef] [PubMed]

Kulkarni, A. P.

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron transport materials for organic light-emitting diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

Kwon, O.

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

Kwong, R. C.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Le, Q. T.

Q. T. Le, L. Yan, Y. G. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces,” J. Appl. Phys.87(1), 375–379 (2000).
[CrossRef]

Lee, T.-W.

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

Liu, M. S.

F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, and A. K. Y. Jen, “A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(15), 2010–2014 (2007).
[CrossRef]

Mason, M. G.

Q. T. Le, L. Yan, Y. G. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces,” J. Appl. Phys.87(1), 375–379 (2000).
[CrossRef]

V. E. Choong, M. G. Mason, C. W. Tang, and Y. G. Gao, “Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum,” Appl. Phys. Lett.72(21), 2689–2691 (1998).
[CrossRef]

Meerholz, K.

K. Meerholz, “Device physics: enlightening solutions,” Nature437(7057), 327–328 (2005).
[CrossRef] [PubMed]

Moses, D.

X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, “Multilayer polymer light-emitting diodes: White-light emission with high efficiency,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2053–2058 (2005).
[CrossRef]

Muller, C.

J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
[CrossRef] [PubMed]

Neher, D.

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett.88(2), 021107 (2006).
[CrossRef]

Nguyen, T.-Q.

T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, and F. Wudl, “Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives,” Chem. Commun. (Camb.)46(43), 8210–8212 (2010).
[CrossRef] [PubMed]

R. Yang, Y. Xu, X.-D. Dang, T.-Q. Nguyen, Y. Cao, and G. C. Bazan, “Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices,” J. Am. Chem. Soc.130(11), 3282–3283 (2008).
[CrossRef] [PubMed]

C. V. Hoven, A. Garcia, G. C. Bazan, and T.-Q. Nguyen, “Recent Applications of conjugated polyelectrolytes in optoelectronic devices,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3793–3810 (2008).
[CrossRef]

Niu, Y.-H.

F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, and A. K. Y. Jen, “A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(15), 2010–2014 (2007).
[CrossRef]

Noh, T.

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

O'Brien, D. F.

M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998).
[CrossRef]

Pace, G.

J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
[CrossRef] [PubMed]

Parac, T. N.

T. Beissel, R. E. Powers, T. N. Parac, and K. N. Raymond, “Coordination number incommensurate cluster formation. 8. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster,” J. Am. Chem. Soc.121(17), 4200–4206 (1999).
[CrossRef]

Park, J. H.

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

Park, J.-J.

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

Park, S. H.

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

Parker, I. D.

I. D. Parker, Y. Cao, and C. Y. Yang, “Lifetime and degradation effects in polymer light-emitting diodes,” J. Appl. Phys.85(4), 2441–2447 (1999).
[CrossRef]

Peng, J.

X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2,7-Carbazole-1,4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules44(11), 4204–4212 (2011).
[CrossRef]

Petty, M. C.

C. S. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce, and M. C. Petty, “New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids,” J. Mater. Chem.12(2), 173–180 (2002).
[CrossRef]

Pho, T. V.

T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, and F. Wudl, “Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives,” Chem. Commun. (Camb.)46(43), 8210–8212 (2010).
[CrossRef] [PubMed]

Powers, R. E.

T. Beissel, R. E. Powers, T. N. Parac, and K. N. Raymond, “Coordination number incommensurate cluster formation. 8. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster,” J. Am. Chem. Soc.121(17), 4200–4206 (1999).
[CrossRef]

Qin, C.

B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010).
[CrossRef]

Raymond, K. N.

T. Beissel, R. E. Powers, T. N. Parac, and K. N. Raymond, “Coordination number incommensurate cluster formation. 8. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster,” J. Am. Chem. Soc.121(17), 4200–4206 (1999).
[CrossRef]

Reynolds, J. R.

H. Jiang, P. Taranekar, J. R. Reynolds, and K. S. Schanze, “Conjugated polyelectrolytes: synthesis, photophysics, and applications,” Angew. Chem. Int. Ed. Engl.48(24), 4300–4316 (2009).
[CrossRef] [PubMed]

Rogler, W.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Roth, W.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Schanze, K. S.

H. Jiang, P. Taranekar, J. R. Reynolds, and K. S. Schanze, “Conjugated polyelectrolytes: synthesis, photophysics, and applications,” Angew. Chem. Int. Ed. Engl.48(24), 4300–4316 (2009).
[CrossRef] [PubMed]

Shih, P.-I.

F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, and A. K. Y. Jen, “Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer,” Adv. Mater. (Deerfield Beach Fla.)21(3), 361–365 (2009).
[CrossRef]

Shoustikov, A.

M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998).
[CrossRef]

Shu, C.-F.

F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, and A. K. Y. Jen, “Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer,” Adv. Mater. (Deerfield Beach Fla.)21(3), 361–365 (2009).
[CrossRef]

Sibley, S.

M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998).
[CrossRef]

Simmerer, J.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

So, F.

F. So and D. Kondakov, “Degradation mechanisms in small-molecule and polymer organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)22(34), 3762–3777 (2010).
[CrossRef] [PubMed]

Staudigel, J.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Steuber, F.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Stoessel, M.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Tang, C. W.

Q. T. Le, L. Yan, Y. G. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces,” J. Appl. Phys.87(1), 375–379 (2000).
[CrossRef]

V. E. Choong, M. G. Mason, C. W. Tang, and Y. G. Gao, “Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum,” Appl. Phys. Lett.72(21), 2689–2691 (1998).
[CrossRef]

Taranekar, P.

H. Jiang, P. Taranekar, J. R. Reynolds, and K. S. Schanze, “Conjugated polyelectrolytes: synthesis, photophysics, and applications,” Angew. Chem. Int. Ed. Engl.48(24), 4300–4316 (2009).
[CrossRef] [PubMed]

Thompson, M. E.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998).
[CrossRef]

Tonzola, C. J.

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron transport materials for organic light-emitting diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

Tu, G.

J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
[CrossRef] [PubMed]

Tung, Y. J.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Wallikewitz, B. H.

J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
[CrossRef] [PubMed]

Wang, C. S.

C. S. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce, and M. C. Petty, “New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids,” J. Mater. Chem.12(2), 173–180 (2002).
[CrossRef]

Wang, F.

L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Twofold terminal post-functionalization of acetylacetone with hole- and electron-transporting fragments,” Tetrahedron Lett.51(35), 4612–4616 (2010).
[CrossRef]

Wang, L.

C. Duan, L. Wang, K. Zhang, X. Guan, and F. Huang, “Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1665–1669 (2011).
[CrossRef] [PubMed]

L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Twofold terminal post-functionalization of acetylacetone with hole- and electron-transporting fragments,” Tetrahedron Lett.51(35), 4612–4616 (2010).
[CrossRef]

B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010).
[CrossRef]

Wang, S.

X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, “Multilayer polymer light-emitting diodes: White-light emission with high efficiency,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2053–2058 (2005).
[CrossRef]

Winnacker, A.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Wittmann, G.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Woo, E. P.

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

Wu, H.

X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2,7-Carbazole-1,4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules44(11), 4204–4212 (2011).
[CrossRef]

C. Zhong, C. Duan, F. Huang, H. Wu, and Y. Cao, “Materials and devices toward fully solution processable organic light-emitting diodes,” Chem. Mater.23(3), 326–340 (2011).
[CrossRef]

F. Huang, H. Wu, and Y. Cao, “Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices,” Chem. Soc. Rev.39(7), 2500–2521 (2010).
[CrossRef] [PubMed]

Wudl, F.

T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, and F. Wudl, “Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives,” Chem. Commun. (Camb.)46(43), 8210–8212 (2010).
[CrossRef] [PubMed]

Xie, Z.

B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010).
[CrossRef]

Xu, X.

X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2,7-Carbazole-1,4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules44(11), 4204–4212 (2011).
[CrossRef]

Xu, Y.

R. Yang, Y. Xu, X.-D. Dang, T.-Q. Nguyen, Y. Cao, and G. C. Bazan, “Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices,” J. Am. Chem. Soc.130(11), 3282–3283 (2008).
[CrossRef] [PubMed]

Yan, L.

Q. T. Le, L. Yan, Y. G. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces,” J. Appl. Phys.87(1), 375–379 (2000).
[CrossRef]

Yang, C. Y.

I. D. Parker, Y. Cao, and C. Y. Yang, “Lifetime and degradation effects in polymer light-emitting diodes,” J. Appl. Phys.85(4), 2441–2447 (1999).
[CrossRef]

Yang, R.

R. Yang, Y. Xu, X.-D. Dang, T.-Q. Nguyen, Y. Cao, and G. C. Bazan, “Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices,” J. Am. Chem. Soc.130(11), 3282–3283 (2008).
[CrossRef] [PubMed]

Yang, X. H.

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett.88(2), 021107 (2006).
[CrossRef]

You, Y.

M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998).
[CrossRef]

Zalar, P.

T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, and F. Wudl, “Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives,” Chem. Commun. (Camb.)46(43), 8210–8212 (2010).
[CrossRef] [PubMed]

Zhang, B.

B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010).
[CrossRef]

Zhang, K.

C. Duan, L. Wang, K. Zhang, X. Guan, and F. Huang, “Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1665–1669 (2011).
[CrossRef] [PubMed]

Zhang, Y.

F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, and A. K. Y. Jen, “A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(15), 2010–2014 (2007).
[CrossRef]

Zhong, C.

C. Zhong, C. Duan, F. Huang, H. Wu, and Y. Cao, “Materials and devices toward fully solution processable organic light-emitting diodes,” Chem. Mater.23(3), 326–340 (2011).
[CrossRef]

Adv. Funct. Mater. (2)

T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park, and B. D. Chin, “Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes,” Adv. Funct. Mater.19(12), 1863–1868 (2009).
[CrossRef]

B. Zhang, C. Qin, J. Ding, L. Chen, Z. Xie, Y. Cheng, and L. Wang, “High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer,” Adv. Funct. Mater.20(17), 2951–2957 (2010).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (6)

F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, and A. K. Y. Jen, “A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(15), 2010–2014 (2007).
[CrossRef]

X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, “Multilayer polymer light-emitting diodes: White-light emission with high efficiency,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2053–2058 (2005).
[CrossRef]

F. So and D. Kondakov, “Degradation mechanisms in small-molecule and polymer organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)22(34), 3762–3777 (2010).
[CrossRef] [PubMed]

C. V. Hoven, A. Garcia, G. C. Bazan, and T.-Q. Nguyen, “Recent Applications of conjugated polyelectrolytes in optoelectronic devices,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3793–3810 (2008).
[CrossRef]

C. Duan, L. Wang, K. Zhang, X. Guan, and F. Huang, “Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1665–1669 (2011).
[CrossRef] [PubMed]

F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi, and A. K. Y. Jen, “Highly efficient polymer white-light-emitting diodes based on lithium salts doped electron transporting layer,” Adv. Mater. (Deerfield Beach Fla.)21(3), 361–365 (2009).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

H. Jiang, P. Taranekar, J. R. Reynolds, and K. S. Schanze, “Conjugated polyelectrolytes: synthesis, photophysics, and applications,” Angew. Chem. Int. Ed. Engl.48(24), 4300–4316 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, “Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles,” Appl. Phys. Lett.88(2), 021107 (2006).
[CrossRef]

V. E. Choong, M. G. Mason, C. W. Tang, and Y. G. Gao, “Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum,” Appl. Phys. Lett.72(21), 2689–2691 (1998).
[CrossRef]

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Chem. Commun. (Camb.) (1)

T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, and F. Wudl, “Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives,” Chem. Commun. (Camb.)46(43), 8210–8212 (2010).
[CrossRef] [PubMed]

Chem. Mater. (2)

A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron transport materials for organic light-emitting diodes,” Chem. Mater.16(23), 4556–4573 (2004).
[CrossRef]

C. Zhong, C. Duan, F. Huang, H. Wu, and Y. Cao, “Materials and devices toward fully solution processable organic light-emitting diodes,” Chem. Mater.23(3), 326–340 (2011).
[CrossRef]

Chem. Soc. Rev. (1)

F. Huang, H. Wu, and Y. Cao, “Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices,” Chem. Soc. Rev.39(7), 2500–2521 (2010).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (3)

J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend, and W. T. S. Huck, “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc.133(4), 683–685 (2011).
[CrossRef] [PubMed]

R. Yang, Y. Xu, X.-D. Dang, T.-Q. Nguyen, Y. Cao, and G. C. Bazan, “Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices,” J. Am. Chem. Soc.130(11), 3282–3283 (2008).
[CrossRef] [PubMed]

T. Beissel, R. E. Powers, T. N. Parac, and K. N. Raymond, “Coordination number incommensurate cluster formation. 8. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster,” J. Am. Chem. Soc.121(17), 4200–4206 (1999).
[CrossRef]

J. Appl. Phys. (3)

Q. T. Le, L. Yan, Y. G. Gao, M. G. Mason, D. J. Giesen, and C. W. Tang, “Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces,” J. Appl. Phys.87(1), 375–379 (2000).
[CrossRef]

M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys.87(9), 4467–4475 (2000).
[CrossRef]

I. D. Parker, Y. Cao, and C. Y. Yang, “Lifetime and degradation effects in polymer light-emitting diodes,” J. Appl. Phys.85(4), 2441–2447 (1999).
[CrossRef]

J. Mater. Chem. (2)

G. Hughes and M. R. Bryce, “Electron-transporting materials for organic electroluminescent and electrophosphorescent devices,” J. Mater. Chem.15(1), 94–107 (2005).
[CrossRef]

C. S. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce, and M. C. Petty, “New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids,” J. Mater. Chem.12(2), 173–180 (2002).
[CrossRef]

Macromolecules (1)

X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2,7-Carbazole-1,4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules44(11), 4204–4212 (2011).
[CrossRef]

Nature (2)

M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature395(6698), 151–154 (1998).
[CrossRef]

K. Meerholz, “Device physics: enlightening solutions,” Nature437(7057), 327–328 (2005).
[CrossRef] [PubMed]

Tetrahedron Lett. (1)

L. Chen, J. Ding, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Twofold terminal post-functionalization of acetylacetone with hole- and electron-transporting fragments,” Tetrahedron Lett.51(35), 4612–4616 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Design strategy of alcohol-soluble electron transporting material P-OXD.

Fig. 2
Fig. 2

, Synthesis of the alcohol-soluble electron transporting material P-OXD. Reagents and conditions: i) Mg/I2, THF, 70 °C, 2h; B(OCH3)3, −78 °C; HCl (aq.) ii) Methyl 4-bromobenzoate, Pd(dppf)Cl2·CH2Cl2, K2CO3, Ag2O, THF, 70 °C, 16h; iii) NH2NH2·H2O, 120 °C, 24h; iv) Isophthaloyl dichloride, Et3N, NMP, 35 °C, 5h; v) POCl3, 120 °C, 18h; vi) BBr3, DCM, 0 °C→r.t., 24h; vii) P(OEt)3, 180 °C, 16h.

Fig. 3
Fig. 3

The comparison of absorption (10−5M in DCM) and fluorescent (10−5M in Toluene) spectra at room temperature as well as phosphorescent spectra (in Toluene) at 77K between OXD-7 and P-OXD.

Fig. 4
Fig. 4

The electrochemical curves of P-OXD and OXD-7 measured in THF (Scan rate: 100 mV s−1).

Fig. 5
Fig. 5

The current density-voltage (a) brightness–voltage (b), and luminous efficiency versus current density (c) characteristics for device A (solid squares), device B (empty circles), device C (empty squares) and device D (solid circles). d) The EL spectrum for device D. Inset: The AFM height image of the P-OXD film spin-coated on top of the emitting layer.

Tables (1)

Tables Icon

Table 1 The EL Properties of the Devices

Metrics