Abstract

We report on a plasmonic light-trapping concept based on localized surface plasmon polariton induced light scattering at nanostructured Ag back contacts of thin-film silicon solar cells. The electromagnetic interaction between incident light and localized surface plasmon polariton resonances in nanostructured Ag back contacts was simulated with a three-dimensional numerical solver of Maxwell’s equations. Geometrical parameters as well as the embedding material of single and periodic nanostructures on Ag layers were varied. The design of the nanostructures was analyzed regarding their ability to scatter incident light at low optical losses into large angles in the silicon absorber layers of the thin-film silicon solar cells.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 37),” Prog. Photovolt. Res. Appl.19(1), 84–92 (2011).
    [CrossRef]
  2. B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
    [CrossRef]
  3. G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009).
    [CrossRef]
  4. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
    [CrossRef]
  5. D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647 (1974).
    [CrossRef]
  6. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl.10(4), 235–241 (2002).
    [CrossRef]
  7. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light-trapping in silicon thin-film solar cells,” Sol. Energy77(6), 917–930 (2004).
    [CrossRef]
  8. T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and M. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin-film polycrystalline silicon solar cells,” J. Non-Cryst. Solids299–302, 1152–1156 (2002).
    [CrossRef]
  9. T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
    [CrossRef]
  10. J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light-trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells85, 1–11 (2005).
  11. S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett.92(17), 171114 (2008).
    [CrossRef]
  12. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
    [CrossRef]
  13. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
    [CrossRef]
  14. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  15. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
    [CrossRef]
  16. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer-Verlag, Berlin, 1995).
  17. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-Interscience, 1983).
  18. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
    [CrossRef]
  19. E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films516(20), 6813–6817 (2008).
    [CrossRef]
  20. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009).
    [CrossRef]
  21. U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517–772519 (2010).
    [CrossRef]
  22. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflectors of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1430 (2004).
    [CrossRef]
  23. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res.244(10), 3419–3434 (2007).
    [CrossRef]
  24. U. W. Paetzold, IEK5-Photovoltaik, Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany (optical data can be provided upon request, contact u.paetzold@fz-juelich.de).
  25. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370––4379 (1972).
    [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York 1985).
  27. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104(12), 123102 (2008).
    [CrossRef]
  28. K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin-film Solar Cells (Springer, Berlin, 2008).
  29. K. Jäger, M. Schulte, K. Bittkau, A. M. Ermes, M. Zeeman, and B. E. Pieters, “Optical scattering properties of nano-textured ZnO silicon interfaces,” Proc. SPIE8001, 800113 (2011).

2011

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 37),” Prog. Photovolt. Res. Appl.19(1), 84–92 (2011).
[CrossRef]

K. Jäger, M. Schulte, K. Bittkau, A. M. Ermes, M. Zeeman, and B. E. Pieters, “Optical scattering properties of nano-textured ZnO silicon interfaces,” Proc. SPIE8001, 800113 (2011).

2010

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517–772519 (2010).
[CrossRef]

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

2009

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009).
[CrossRef]

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009).
[CrossRef]

2008

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films516(20), 6813–6817 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett.92(17), 171114 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104(12), 123102 (2008).
[CrossRef]

2007

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res.244(10), 3419–3434 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

2006

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

2005

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light-trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells85, 1–11 (2005).

2004

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light-trapping in silicon thin-film solar cells,” Sol. Energy77(6), 917–930 (2004).
[CrossRef]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflectors of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1430 (2004).
[CrossRef]

2002

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and M. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin-film polycrystalline silicon solar cells,” J. Non-Cryst. Solids299–302, 1152–1156 (2002).
[CrossRef]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl.10(4), 235–241 (2002).
[CrossRef]

1982

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

1974

D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647 (1974).
[CrossRef]

1972

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370––4379 (1972).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009).
[CrossRef]

Ballif, C.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Berginski, M.

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

Bittkau, K.

K. Jäger, M. Schulte, K. Bittkau, A. M. Ermes, M. Zeeman, and B. E. Pieters, “Optical scattering properties of nano-textured ZnO silicon interfaces,” Proc. SPIE8001, 800113 (2011).

Boccard, M.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Bugnon, G.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Burger, S.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res.244(10), 3419–3434 (2007).
[CrossRef]

Calnan, S.

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

Carius, R.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517–772519 (2010).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370––4379 (1972).
[CrossRef]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

Cuony, P.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Despeisse, M.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Dominé, D.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 37),” Prog. Photovolt. Res. Appl.19(1), 84–92 (2011).
[CrossRef]

Ermes, A. M.

K. Jäger, M. Schulte, K. Bittkau, A. M. Ermes, M. Zeeman, and B. E. Pieters, “Optical scattering properties of nano-textured ZnO silicon interfaces,” Proc. SPIE8001, 800113 (2011).

Fahr, S.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104(12), 123102 (2008).
[CrossRef]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett.92(17), 171114 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
[CrossRef]

Fay, S.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Feltrin, A.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009).
[CrossRef]

Gordijn, A.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films516(20), 6813–6817 (2008).
[CrossRef]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 37),” Prog. Photovolt. Res. Appl.19(1), 84–92 (2011).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl.10(4), 235–241 (2002).
[CrossRef]

Guha, S.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009).
[CrossRef]

Hallermann, F.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517–772519 (2010).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
[CrossRef]

Haug, F. J.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 37),” Prog. Photovolt. Res. Appl.19(1), 84–92 (2011).
[CrossRef]

Hüpkes, J.

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

Jäger, K.

K. Jäger, M. Schulte, K. Bittkau, A. M. Ermes, M. Zeeman, and B. E. Pieters, “Optical scattering properties of nano-textured ZnO silicon interfaces,” Proc. SPIE8001, 800113 (2011).

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370––4379 (1972).
[CrossRef]

Kilper, T.

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

Kluth, O.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflectors of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1430 (2004).
[CrossRef]

Lederer, F.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104(12), 123102 (2008).
[CrossRef]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett.92(17), 171114 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
[CrossRef]

Li, H. B. T.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009).
[CrossRef]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Matsui, T.

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and M. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin-film polycrystalline silicon solar cells,” J. Non-Cryst. Solids299–302, 1152–1156 (2002).
[CrossRef]

Meillaud, F.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Moulin, E.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films516(20), 6813–6817 (2008).
[CrossRef]

Müller, J.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light-trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells85, 1–11 (2005).

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light-trapping in silicon thin-film solar cells,” Sol. Energy77(6), 917–930 (2004).
[CrossRef]

Müllerova, L.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflectors of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1430 (2004).
[CrossRef]

Nicolay, S.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Okamoto, M.

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and M. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin-film polycrystalline silicon solar cells,” J. Non-Cryst. Solids299–302, 1152–1156 (2002).
[CrossRef]

Owens, J. M.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009).
[CrossRef]

Paetzold, U. W.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517–772519 (2010).
[CrossRef]

Pieters, B. E.

K. Jäger, M. Schulte, K. Bittkau, A. M. Ermes, M. Zeeman, and B. E. Pieters, “Optical scattering properties of nano-textured ZnO silicon interfaces,” Proc. SPIE8001, 800113 (2011).

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517–772519 (2010).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Plessen, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Pomplun, J.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res.244(10), 3419–3434 (2007).
[CrossRef]

Poruba, A.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflectors of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1430 (2004).
[CrossRef]

Rau, U.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517–772519 (2010).
[CrossRef]

Rech, B.

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light-trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells85, 1–11 (2005).

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light-trapping in silicon thin-film solar cells,” Sol. Energy77(6), 917–930 (2004).
[CrossRef]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflectors of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1430 (2004).
[CrossRef]

Redfield, D.

D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647 (1974).
[CrossRef]

Reetz, W.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light-trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells85, 1–11 (2005).

Repmann, T.

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

Rockstuhl, C.

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett.92(17), 171114 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104(12), 123102 (2008).
[CrossRef]

Royer, F.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films516(20), 6813–6817 (2008).
[CrossRef]

Saika, H.

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and M. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin-film polycrystalline silicon solar cells,” J. Non-Cryst. Solids299–302, 1152–1156 (2002).
[CrossRef]

Schmidt, F.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res.244(10), 3419–3434 (2007).
[CrossRef]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009).
[CrossRef]

Schulte, M.

K. Jäger, M. Schulte, K. Bittkau, A. M. Ermes, M. Zeeman, and B. E. Pieters, “Optical scattering properties of nano-textured ZnO silicon interfaces,” Proc. SPIE8001, 800113 (2011).

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films516(20), 6813–6817 (2008).
[CrossRef]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
[CrossRef]

Sivec, L.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009).
[CrossRef]

Söderström, T.

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Springer, J.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light-trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells85, 1–11 (2005).

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light-trapping in silicon thin-film solar cells,” Sol. Energy77(6), 917–930 (2004).
[CrossRef]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflectors of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1430 (2004).
[CrossRef]

Stiebig, H.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films516(20), 6813–6817 (2008).
[CrossRef]

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

Sukmanowski, J.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films516(20), 6813–6817 (2008).
[CrossRef]

Toyama, T.

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and M. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin-film polycrystalline silicon solar cells,” J. Non-Cryst. Solids299–302, 1152–1156 (2002).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

Tsukiji, M.

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and M. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin-film polycrystalline silicon solar cells,” J. Non-Cryst. Solids299–302, 1152–1156 (2002).
[CrossRef]

van den Donker, M. N.

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

Vanecek, M.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light-trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells85, 1–11 (2005).

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light-trapping in silicon thin-film solar cells,” Sol. Energy77(6), 917–930 (2004).
[CrossRef]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflectors of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1430 (2004).
[CrossRef]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009).
[CrossRef]

von Plessen, G.

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517–772519 (2010).
[CrossRef]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 37),” Prog. Photovolt. Res. Appl.19(1), 84–92 (2011).
[CrossRef]

Wieder, S.

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

Yan, B.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009).
[CrossRef]

Yang, J.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009).
[CrossRef]

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

Yue, G.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009).
[CrossRef]

Zeeman, M.

K. Jäger, M. Schulte, K. Bittkau, A. M. Ermes, M. Zeeman, and B. E. Pieters, “Optical scattering properties of nano-textured ZnO silicon interfaces,” Proc. SPIE8001, 800113 (2011).

Zschiedrich, L.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res.244(10), 3419–3434 (2007).
[CrossRef]

Appl. Phys. Lett.

G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009).
[CrossRef]

D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647 (1974).
[CrossRef]

S. Fahr, C. Rockstuhl, and F. Lederer, “Engineering the randomness for enhanced absorption in solar cells,” Appl. Phys. Lett.92(17), 171114 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95(18), 183503 (2009).
[CrossRef]

IEEE Trans. Electron. Dev.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

J. Appl. Phys.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007).
[CrossRef]

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflectors of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1430 (2004).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104(12), 123102 (2008).
[CrossRef]

J. Non-Cryst. Solids

T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and M. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin-film polycrystalline silicon solar cells,” J. Non-Cryst. Solids299–302, 1152–1156 (2002).
[CrossRef]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Phys. Rev. B

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370––4379 (1972).
[CrossRef]

Phys. Status Solidi

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi205(12), 2844–2861 (2008).
[CrossRef]

Phys. Status Solidi, B Basic Res.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res.244(10), 3419–3434 (2007).
[CrossRef]

Proc. SPIE

K. Jäger, M. Schulte, K. Bittkau, A. M. Ermes, M. Zeeman, and B. E. Pieters, “Optical scattering properties of nano-textured ZnO silicon interfaces,” Proc. SPIE8001, 800113 (2011).

U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contacts of thin-film silicon solar cells,” Proc. SPIE7725, 772517, 772517–772519 (2010).
[CrossRef]

T. Söderström, D. Dominé, A. Feltrin, M. Despeisse, F. Meillaud, G. Bugnon, M. Boccard, P. Cuony, F. J. Haug, S. Fay, S. Nicolay, and C. Ballif, “ZnO Transparent conductive oxide for thin-film silicon solar cells,” Proc. SPIE7603, 76030B, 76030B–12 (2010).
[CrossRef]

Prog. Photovolt. Res. Appl.

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl.10(4), 235–241 (2002).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 37),” Prog. Photovolt. Res. Appl.19(1), 84–92 (2011).
[CrossRef]

Sol. Energy

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light-trapping in silicon thin-film solar cells,” Sol. Energy77(6), 917–930 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light-trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells85, 1–11 (2005).

Thin Solid Films

B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in microcrystalline silicon based solar cell technology,” Thin Solid Films511–512, 548–555 (2006).
[CrossRef]

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films516(20), 6813–6817 (2008).
[CrossRef]

Other

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer-Verlag, Berlin, 1995).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-Interscience, 1983).

K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin-film Solar Cells (Springer, Berlin, 2008).

U. W. Paetzold, IEK5-Photovoltaik, Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany (optical data can be provided upon request, contact u.paetzold@fz-juelich.de).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic cross-section of the tandem thin-film silicon solar cell with plasmonic back contacts consisting of (b) stochastic distributions of Ag nanostructures or (c) periodically arranged Ag nanostructures on the Ag back contact.

Fig. 2
Fig. 2

Cross section of the simulated geometries: (a) Isolated hemispherical nanostructure on Ag back layer embedded in ZnO:Al. (b) Isolated nanostructure on the Ag back layer embedded conformally in an 180 nm thick ZnO:Al layer and a µc-Si:H half-space. (c) Square lattice Ag reflection grating at the back contact. The absolute electric field distribution is shown, both, in a plane parallel (center) and a plane perpendicular (right side) to the polarization of the incident light (wavelength of 850 nm). The radius of the hemispherical nanostructure is 150 nm.

Fig. 3
Fig. 3

Absorption efficiency Q abs (a) and scattering efficiency Q sca (b) of an isolated hemispherical nanostructure on Ag embedded in a ZnO:Al half-space. The grey region indicates the operating spectral range for a plasmonic back contact (500 nm < λ < 1100 nm).

Fig. 4
Fig. 4

Maximum scattering efficiency Qsca of the dominant LSPP resonance plotted against the resonance wavelength. Hemispherical Ag nanostructures of various radii embedded in SiO2, ZnO:Al and µc-Si:H (top) are studied. The grey region indicates the operating spectral range for a plasmonic back contact (500 nm < λ < 1100 nm).

Fig. 5
Fig. 5

Maximum absorption efficiency Qabs (a) and maximum scattering efficiency Qsca (b) of the dominant LSPP resonance plotted against the corresponding resonance wavelength λres. Conical, hemispherical and cylindrical nanostructures on Ag layers embedded in ZnO:Al (bottom) are studied. For all geometries the radius of the nanostructures is varied. The grey region indicates the operating spectral range of a plasmonic back contact in thin-film silicon solar cells (500 nm < λ < 1100 nm).

Fig. 6
Fig. 6

(a) Scattering efficiency Q sca and absorption efficiency Q abs as well as (b) normalized intensity distribution of scattered light of hemispherical Ag nanostructures (radius = 150 nm) embedded conformally in ZnO:Al and µc-Si:H. The thickness of the ZnO:Al layer is 180 nm.

Fig. 7
Fig. 7

Mean scattering and absorption efficiency of single nanostructures (hemispherical, radius = 150 nm) on Ag back contacts. The data is averaged over the relevant wavelength range (500 nm < λ < 1100 nm).

Fig. 8
Fig. 8

(a), (b) Simulated absorption A, specular reflection R spec and non-specular reflection R non-spec of square lattice reflection gratings of hemispherical Ag nanostructures at the back contact. The period of the reflection grating is set to 400 nm (left side) and 600 nm (right side). (c), (d) Scattering intensity distribution of the non-specular reflected light within the diffraction orders of the reflection grating as a function of the scattering angle and the wavelength. For comparison the total internal reflection angle of μc-Si:H/air (blue dotted line) and μc-Si:H/ZnO:Al (red dashed line) are given.

Fig. 9
Fig. 9

Simulated absorption A, specular reflection R spec and non-specular reflection R non-spec of reflection gratings formed by hemispherical Ag nanostructures at the back contact of a thin-film silicon solar cell [cf. Figure 2 (c)]. The data, which is averaged over the wavelength range from 500 nm to 1100 nm, is given for various periods of the reflection grating. Also the amount of light reflected non-specular to angles larger than the total reflection angle of the µc-Si:H/Air interface and the µc-Si:H/ZnO interface is given in R non-spec’ and R non-spec”, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q abs = P a b s I i n c i d e n t C n a n o s t r u c t u r e                 and             Q sca = P s c a I i n c i d e n t C n a n o s t r u c t u r e
sin ( α )   = N x y λ       L n μ c S i w i t h ​   N x y = m x 2 + m y 2     a n d m x , m y = ±       0 , 1 , 2 , 3 , 4 , ...

Metrics