Abstract

In this work, we report a CMOS comparable fabrication process of core-shell SiNW solar cell from single-crystalline p-type Si(100) test wafers. Optical lithography defined plasma etching was used to form highly ordered vertical SiNW arrays, which display a drastic reduction in optical reflectance over a wide range of wavelengths. BF2 and P ion implantations were employed for producing a sharp and shallow radial p-n junction. Under AM 1.5G illumination, the device demonstrates a short circuit current density (Jsc) of 14.2 mA/cm2, an open circuit voltage (Voc) of 0.485 V and a fill factor (FF) of 42.9%, giving a power conversion efficiency (PCE) of 2.95%. The Jsc observed is 52% higher than that in the control device with planar Si p-n junction, indicating significant enhancement in carrier generation and collection efficiency from the core-shell structure. Impact of series resistance (Rs) is also studied, highlighting potential improvement of PCE to 4.40% in the absence of Rs. With top contact optimized, PCE could further increase to 6.29%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature 414(6861), 332–337 (2001).
    [CrossRef] [PubMed]
  2. M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
    [CrossRef] [PubMed]
  3. G. Goncher, and R. Solanki, “Semiconductor nanowire photovoltaics,” Proc. SPIE 7047, 70470L–1 – 70470L–14 (2008).
  4. L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
    [CrossRef]
  5. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [CrossRef] [PubMed]
  6. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n Junction nanorod solarc,” J. Appl. Phys. 97, 114302 (2005).
    [CrossRef]
  7. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [CrossRef] [PubMed]
  8. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
    [CrossRef]
  9. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
    [CrossRef] [PubMed]
  10. Th. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christianse, “Silicon nanowire-based solar cells,” Nanotechnology 19, 295203 (2008).
    [CrossRef] [PubMed]
  11. K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92, 163103 (2008).
    [CrossRef]
  12. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
    [CrossRef] [PubMed]
  13. X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cell,” J. Appl. Phys. 108, 124303 (2010).
    [CrossRef]
  14. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  15. M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, and S. R. Wenham, “High-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 679–683 (1984).
    [CrossRef]
  16. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [CrossRef] [PubMed]
  17. S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2007).
  18. M. Wolf and H. Rauschenbach, “Series resistance effects on solar cell measurements,” Adv. Energy Convers. 3(2), 455–479 (1963).
    [CrossRef]
  19. M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” Solid-State Electron. 24(8), 788–789 (1981).
    [CrossRef]
  20. C. Honsberg, and S. Bowden, “PVCDROM: Measuring ideality factor,” (Photovoltaic Education Network, 2010). http://www.pveducation.org/pvcdrom/characterisation/measurement-of-ideality-factor .
  21. D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, New Jersey, 2005).

2010 (3)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cell,” J. Appl. Phys. 108, 124303 (2010).
[CrossRef]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

2008 (4)

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Th. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christianse, “Silicon nanowire-based solar cells,” Nanotechnology 19, 295203 (2008).
[CrossRef] [PubMed]

K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92, 163103 (2008).
[CrossRef]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

2007 (4)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

2005 (1)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n Junction nanorod solarc,” J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

2001 (2)

M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature 414(6861), 332–337 (2001).
[CrossRef] [PubMed]

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[CrossRef] [PubMed]

1984 (1)

M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, and S. R. Wenham, “High-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 679–683 (1984).
[CrossRef]

1981 (1)

M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” Solid-State Electron. 24(8), 788–789 (1981).
[CrossRef]

1963 (1)

M. Wolf and H. Rauschenbach, “Series resistance effects on solar cell measurements,” Adv. Energy Convers. 3(2), 455–479 (1963).
[CrossRef]

Andra, G.

Th. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christianse, “Silicon nanowire-based solar cells,” Nanotechnology 19, 295203 (2008).
[CrossRef] [PubMed]

Antoniadis, D. A.

X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cell,” J. Appl. Phys. 108, 124303 (2010).
[CrossRef]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n Junction nanorod solarc,” J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

Blakers, A. W.

M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, and S. R. Wenham, “High-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 679–683 (1984).
[CrossRef]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Christianse, S.

Th. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christianse, “Silicon nanowire-based solar cells,” Nanotechnology 19, 295203 (2008).
[CrossRef] [PubMed]

Codella, P. J.

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Davuluru, A.

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Dresselhaus, M. S.

M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature 414(6861), 332–337 (2001).
[CrossRef] [PubMed]

Falk, F.

Th. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christianse, “Silicon nanowire-based solar cells,” Nanotechnology 19, 295203 (2008).
[CrossRef] [PubMed]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Filler, M. A.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Fitzgerald, E. A.

X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cell,” J. Appl. Phys. 108, 124303 (2010).
[CrossRef]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Garnett, E. C.

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Grätzel, M.

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[CrossRef] [PubMed]

Green, M. A.

M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, and S. R. Wenham, “High-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 679–683 (1984).
[CrossRef]

M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” Solid-State Electron. 24(8), 788–789 (1981).
[CrossRef]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Kayes, B. M.

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n Junction nanorod solarc,” J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

Keller, E. M.

M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, and S. R. Wenham, “High-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 679–683 (1984).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

LeBoeuf, S. F.

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Lee, S. T.

K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92, 163103 (2008).
[CrossRef]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n Junction nanorod solarc,” J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Ose, E.

Th. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christianse, “Silicon nanowire-based solar cells,” Nanotechnology 19, 295203 (2008).
[CrossRef] [PubMed]

Peng, K.

K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92, 163103 (2008).
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Pey, K. L.

X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cell,” J. Appl. Phys. 108, 124303 (2010).
[CrossRef]

Pietrzykowski, M.

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Pietsch, M.

Th. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christianse, “Silicon nanowire-based solar cells,” Nanotechnology 19, 295203 (2008).
[CrossRef] [PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Rapol, U.

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Rauschenbach, H.

M. Wolf and H. Rauschenbach, “Series resistance effects on solar cell measurements,” Adv. Energy Convers. 3(2), 455–479 (1963).
[CrossRef]

Shi, J.

M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, and S. R. Wenham, “High-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 679–683 (1984).
[CrossRef]

Shih, M. Y.

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Stelzner, Th.

Th. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christianse, “Silicon nanowire-based solar cells,” Nanotechnology 19, 295203 (2008).
[CrossRef] [PubMed]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Thomas, I. L.

M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature 414(6861), 332–337 (2001).
[CrossRef] [PubMed]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

Wang, X.

X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cell,” J. Appl. Phys. 108, 124303 (2010).
[CrossRef]

K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92, 163103 (2008).
[CrossRef]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Wenham, S. R.

M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, and S. R. Wenham, “High-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 679–683 (1984).
[CrossRef]

Wolf, M.

M. Wolf and H. Rauschenbach, “Series resistance effects on solar cell measurements,” Adv. Energy Convers. 3(2), 455–479 (1963).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Yip, C. H.

X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cell,” J. Appl. Phys. 108, 124303 (2010).
[CrossRef]

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Adv. Energy Convers. (1)

M. Wolf and H. Rauschenbach, “Series resistance effects on solar cell measurements,” Adv. Energy Convers. 3(2), 455–479 (1963).
[CrossRef]

Appl. Phys. Lett. (2)

K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92, 163103 (2008).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, and S. R. Wenham, “High-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 31(5), 679–683 (1984).
[CrossRef]

J. Am. Chem. Soc. (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

X. Wang, K. L. Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, “Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cell,” J. Appl. Phys. 108, 124303 (2010).
[CrossRef]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n Junction nanorod solarc,” J. Appl. Phys. 97, 114302 (2005).
[CrossRef]

J. Nanophotonics (1)

L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1, 013552 (2007).
[CrossRef]

Nano Lett. (3)

M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8(2), 710–714 (2008).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Nanotechnology (1)

Th. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christianse, “Silicon nanowire-based solar cells,” Nanotechnology 19, 295203 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[CrossRef] [PubMed]

Nature (3)

M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature 414(6861), 332–337 (2001).
[CrossRef] [PubMed]

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[CrossRef] [PubMed]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Solid-State Electron. (1)

M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” Solid-State Electron. 24(8), 788–789 (1981).
[CrossRef]

Other (4)

C. Honsberg, and S. Bowden, “PVCDROM: Measuring ideality factor,” (Photovoltaic Education Network, 2010). http://www.pveducation.org/pvcdrom/characterisation/measurement-of-ideality-factor .

D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, New Jersey, 2005).

G. Goncher, and R. Solanki, “Semiconductor nanowire photovoltaics,” Proc. SPIE 7047, 70470L–1 – 70470L–14 (2008).

S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic demonstration of fabrication process of core-shell SiNW solar cell. (a) Starting p-type Si test wafer. (b) BSF formation by BF2 implant. (c) DUV lithography patterning and resist trimming. (d) SiNW fabrication by SF6 based plasma etching. (e) BF2 implant to increase core dopant concentration. (f) Phosphorous shell implant. (g) Metal contact formation. (h) Illustration of four-rotational ion implantations for BF2 core implant (Left) and phosphorous shell implant (Right). Each stage consists of four sub ion implant steps, with rotation of 0°, 90°, 180° and 270° respectively and a vertical tilt of 7° for every implant. BF2 core implant was done with dose of 2.5 x 1013 cm−2 and energy of 80 keV; phosphorous shell implant was done with dose of 1015 cm−2 and energy of 7 keV.

Fig. 2
Fig. 2

(a) 45° tilt Scanning Electron Microscope (SEM) image of resist nano-hemispheres on Si surface after lithography patterning and resist trimming. (b) 45° tilt SEM image of SiNW array formed by plasma etch. (c) Transmission Electron Microscope (TEM) image of SiNW device cross-section near the top surface where metal grid is deposited. The dark outline indicates the border of a nanowire under the grayish metal layer. (d) Enlarged view at the metal-Si interface of a nanowire. (e) 45° tilted top view of complete SiNW device (left) and planar Si control device (right) under visible light. Dark scale bars in (a)-(c) represent 1 um.

Fig. 3
Fig. 3

(a) Reflectance data of SiNW surface and planar Si surface, measured using integrating sphere. (b) Reflected spectral irrandiance of SiNW surface comparing with that of planar Si surface; the inset shows incident spectral irradiance under standard AM 1.5G illumination.

Fig. 4
Fig. 4

(a) Simulated boron profile in a nanowire after BF2 core implant (rotation: 0°, 90°, 180°, 270°; dose: 2.5 x 1013 cm−2, energy: 80 keV, tilt: 7° for each rotation) and 1 hour drive-in at 1000 °C. (b) Simulated phosphorous profile in a nanowire after P shell implant (rotation: 0°, 90°, 180°, 270°; dose: 1015 cm−2, energy: 7 keV, tilt: 7° for each rotation). The color gradient depicts distribution of different dopant concentrations in the vertical cross-section of the wire. Junction depth (at which both dopant concentrations are approximately equal) is estimated to be 50 nm. (c) A schematic illustration of the radial p-n junction in a nanowire, indicating the estimated junction depth and depletion width d.

Fig. 5
Fig. 5

(a) I-V characteristic of core-shell SiNW solar cell in dark and AM 1.5G illumination. (b) Comparison of I-V characteristic between core-shell SiNW and planar Si solar cell under AM 1.5G illumination. (c) Comparison of dark I-V characteristics between core-shell SiNW and planar Si solar cell in reverse bias region. (d) Semi-log plot of dark current in forward bias region. (e) Local ideality factor as a function of voltage in forward bias region.

Fig. 6
Fig. 6

Evaluation of series resistance using multiple intensity method in (a) core-shell SiNW solar cell and (b) planar Si solar cell. E represents incident illumination on the surface of the device.

Fig. 7
Fig. 7

I-V curves before and after eliminating the effect of Rs for (a) core-shell SiNW solar cell and (b) planar Si solar cell.

Tables (1)

Tables Icon

Table 1 I-V Characterization of Planar Si and Core-Shell SiNW Solar Cell

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V b i = k T q ln ( N A N D n i 2 ) ,
d = 2 ε q N A + N D N A N D ( V b i V ) ,
I = I 0 exp [ q ( V c e l l + I R s ) n k T ] I L ,
V c e l l = V a p p I R s ,

Metrics