Abstract

We report the development of new nanophosphor structures based on the Mn-doped ZnSeS material system to enhance the color properties, luminosity and efficiency of white LEDs. These structures have been demonstrated for phosphor-based white LED applications utilizing both blue and UV LED systems. Bandgap tuning for near UV (405 nm) and blue (460 nm) excitations are reported. Using various optimization procedures, we have produced ZnSe:Mn nanoparticles with an external quantum yield greater than 80%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-S. Chen, C.-K. Hsu, and H.-Y. Hong, “InGaN-CdSe-ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett. 18(1), 193–195 (2006).
    [CrossRef]
  2. V. Klimov, “Nanocrystal quantum dots: from fundamental photophysics to multicolor lasing,” Los Alamos Sci. 28, 214–220 (2003).
  3. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodispersed nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
    [CrossRef]
  4. J. P. Wilcoxon and P. Newcomer, “Optical properties of II-VI semiconductor nanoclusters for use as phosphors,” Proc. SPIE 4808, 99–114 (2002).
    [CrossRef]
  5. Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
    [CrossRef]
  6. Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,” J. Appl. Phys. 84(6), 3342–3348 (1998).
    [CrossRef]
  7. S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
    [CrossRef]
  8. M. V. Artemyev, L. I. Gurinovich, A. P. Stupak, and S. V. Gaponenko, “Luminescence of CdS nanoparticles doped with Mn,” Phys. Status Solidi, B Basic Res. 224(1), 191–194 (2001).
    [CrossRef]
  9. Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
    [CrossRef]
  10. H. Menkara, T. R. Morris II, R. A. Gilstrap, Jr., B. K. Wagner, and C. J. Summers, “Sulfoselenide phosphors and nanophosphors for solid-state lighting” (Invited), 32nd Intern. Conference and Exposition on Advanced Ceramics and Composites, Daytona (2008).
  11. J. A. Simmons, “Basic research needs for solid state lighting: LED science,” Sandia National Labs, APS Meeting (Mar. 2007), p. 20, http://www.aps.org/meetings/multimedia/march2007/upload/simmons.pdf .
  12. S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
    [CrossRef] [PubMed]
  13. N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129(11), 3339–3347 (2007).
    [CrossRef] [PubMed]
  14. D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319(5871), 1776–1779 (2008).
    [CrossRef] [PubMed]
  15. C. J. Summers, H. M. Menkara, R. A. Gilstrap, M. Menkara, and T. Morris, “Nanocrystalline phosphors for lighting and detection applications,” Mater. Sci. Forum 654–656, 1130–1133 (2010).
    [CrossRef]

2010 (1)

C. J. Summers, H. M. Menkara, R. A. Gilstrap, M. Menkara, and T. Morris, “Nanocrystalline phosphors for lighting and detection applications,” Mater. Sci. Forum 654–656, 1130–1133 (2010).
[CrossRef]

2008 (1)

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319(5871), 1776–1779 (2008).
[CrossRef] [PubMed]

2007 (1)

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129(11), 3339–3347 (2007).
[CrossRef] [PubMed]

2006 (1)

H.-S. Chen, C.-K. Hsu, and H.-Y. Hong, “InGaN-CdSe-ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett. 18(1), 193–195 (2006).
[CrossRef]

2005 (1)

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[CrossRef] [PubMed]

2004 (1)

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

2003 (1)

V. Klimov, “Nanocrystal quantum dots: from fundamental photophysics to multicolor lasing,” Los Alamos Sci. 28, 214–220 (2003).

2002 (1)

J. P. Wilcoxon and P. Newcomer, “Optical properties of II-VI semiconductor nanoclusters for use as phosphors,” Proc. SPIE 4808, 99–114 (2002).
[CrossRef]

2001 (1)

M. V. Artemyev, L. I. Gurinovich, A. P. Stupak, and S. V. Gaponenko, “Luminescence of CdS nanoparticles doped with Mn,” Phys. Status Solidi, B Basic Res. 224(1), 191–194 (2001).
[CrossRef]

2000 (1)

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodispersed nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[CrossRef]

1998 (1)

Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,” J. Appl. Phys. 84(6), 3342–3348 (1998).
[CrossRef]

1996 (2)

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Artemyev, M. V.

M. V. Artemyev, L. I. Gurinovich, A. P. Stupak, and S. V. Gaponenko, “Luminescence of CdS nanoparticles doped with Mn,” Phys. Status Solidi, B Basic Res. 224(1), 191–194 (2001).
[CrossRef]

Bawendi, M. G.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodispersed nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[CrossRef]

Biquard, X.

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

Bowers, J. E.

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Chang, L.

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Charbonneau, S.

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Chen, H.-S.

H.-S. Chen, C.-K. Hsu, and H.-Y. Hong, “InGaN-CdSe-ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett. 18(1), 193–195 (2006).
[CrossRef]

Chen, P.

Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,” J. Appl. Phys. 84(6), 3342–3348 (1998).
[CrossRef]

Dang, L. S.

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

Daudin, B.

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

Efros, A. L.

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319(5871), 1776–1779 (2008).
[CrossRef] [PubMed]

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[CrossRef] [PubMed]

Enjalbert, F.

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

Erwin, S. C.

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319(5871), 1776–1779 (2008).
[CrossRef] [PubMed]

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[CrossRef] [PubMed]

Fafard, S.

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Gaponenko, S. V.

M. V. Artemyev, L. I. Gurinovich, A. P. Stupak, and S. V. Gaponenko, “Luminescence of CdS nanoparticles doped with Mn,” Phys. Status Solidi, B Basic Res. 224(1), 191–194 (2001).
[CrossRef]

Ge, W.

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Gilstrap, R. A.

C. J. Summers, H. M. Menkara, R. A. Gilstrap, M. Menkara, and T. Morris, “Nanocrystalline phosphors for lighting and detection applications,” Mater. Sci. Forum 654–656, 1130–1133 (2010).
[CrossRef]

Gurinovich, L. I.

M. V. Artemyev, L. I. Gurinovich, A. P. Stupak, and S. V. Gaponenko, “Luminescence of CdS nanoparticles doped with Mn,” Phys. Status Solidi, B Basic Res. 224(1), 191–194 (2001).
[CrossRef]

Haftel, M. I.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[CrossRef] [PubMed]

Hong, H.-Y.

H.-S. Chen, C.-K. Hsu, and H.-Y. Hong, “InGaN-CdSe-ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett. 18(1), 193–195 (2006).
[CrossRef]

Hori, Y.

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

Hsu, C.-K.

H.-S. Chen, C.-K. Hsu, and H.-Y. Hong, “InGaN-CdSe-ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett. 18(1), 193–195 (2006).
[CrossRef]

Jalabert, D.

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

Kagan, C. R.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodispersed nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[CrossRef]

Kennedy, T. A.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[CrossRef] [PubMed]

Klimov, V.

V. Klimov, “Nanocrystal quantum dots: from fundamental photophysics to multicolor lasing,” Los Alamos Sci. 28, 214–220 (2003).

Leon, R.

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Leonard, D.

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Lu, Z.

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Madhukar, A.

Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,” J. Appl. Phys. 84(6), 3342–3348 (1998).
[CrossRef]

Menkara, H. M.

C. J. Summers, H. M. Menkara, R. A. Gilstrap, M. Menkara, and T. Morris, “Nanocrystalline phosphors for lighting and detection applications,” Mater. Sci. Forum 654–656, 1130–1133 (2010).
[CrossRef]

Menkara, M.

C. J. Summers, H. M. Menkara, R. A. Gilstrap, M. Menkara, and T. Morris, “Nanocrystalline phosphors for lighting and detection applications,” Mater. Sci. Forum 654–656, 1130–1133 (2010).
[CrossRef]

Merz, J. L.

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Monroy, E.

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

Morris, T.

C. J. Summers, H. M. Menkara, R. A. Gilstrap, M. Menkara, and T. Morris, “Nanocrystalline phosphors for lighting and detection applications,” Mater. Sci. Forum 654–656, 1130–1133 (2010).
[CrossRef]

Mukhametzhanov, I.

Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,” J. Appl. Phys. 84(6), 3342–3348 (1998).
[CrossRef]

Murray, C. B.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodispersed nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[CrossRef]

Newcomer, P.

J. P. Wilcoxon and P. Newcomer, “Optical properties of II-VI semiconductor nanoclusters for use as phosphors,” Proc. SPIE 4808, 99–114 (2002).
[CrossRef]

Norris, D. J.

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319(5871), 1776–1779 (2008).
[CrossRef] [PubMed]

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[CrossRef] [PubMed]

Oda, O.

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

Peng, X.

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129(11), 3339–3347 (2007).
[CrossRef] [PubMed]

Petroff, P. M.

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Pradhan, N.

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129(11), 3339–3347 (2007).
[CrossRef] [PubMed]

Raymond, S.

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Rich, D. H.

Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,” J. Appl. Phys. 84(6), 3342–3348 (1998).
[CrossRef]

Stupak, A. P.

M. V. Artemyev, L. I. Gurinovich, A. P. Stupak, and S. V. Gaponenko, “Luminescence of CdS nanoparticles doped with Mn,” Phys. Status Solidi, B Basic Res. 224(1), 191–194 (2001).
[CrossRef]

Summers, C. J.

C. J. Summers, H. M. Menkara, R. A. Gilstrap, M. Menkara, and T. Morris, “Nanocrystalline phosphors for lighting and detection applications,” Mater. Sci. Forum 654–656, 1130–1133 (2010).
[CrossRef]

Tanaka, M.

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

Tang, Y.

Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,” J. Appl. Phys. 84(6), 3342–3348 (1998).
[CrossRef]

Wang, G.

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Wang, J.

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Wang, Y.

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Wilcoxon, J. P.

J. P. Wilcoxon and P. Newcomer, “Optical properties of II-VI semiconductor nanoclusters for use as phosphors,” Proc. SPIE 4808, 99–114 (2002).
[CrossRef]

Xu, J.

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Xu, Z.

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Yang, X.

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Yuan, Z.

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Zheng, B.

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Zu, L.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[CrossRef] [PubMed]

Annu. Rev. Mater. Sci. (1)

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodispersed nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Hori, X. Biquard, E. Monroy, D. Jalabert, F. Enjalbert, L. S. Dang, M. Tanaka, O. Oda, and B. Daudin, “GaN quantum dots doped with Eu,” Appl. Phys. Lett. 84(2), 206–208 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H.-S. Chen, C.-K. Hsu, and H.-Y. Hong, “InGaN-CdSe-ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett. 18(1), 193–195 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129(11), 3339–3347 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,” J. Appl. Phys. 84(6), 3342–3348 (1998).
[CrossRef]

Los Alamos Sci. (1)

V. Klimov, “Nanocrystal quantum dots: from fundamental photophysics to multicolor lasing,” Los Alamos Sci. 28, 214–220 (2003).

Mater. Sci. Forum (1)

C. J. Summers, H. M. Menkara, R. A. Gilstrap, M. Menkara, and T. Morris, “Nanocrystalline phosphors for lighting and detection applications,” Mater. Sci. Forum 654–656, 1130–1133 (2010).
[CrossRef]

Nature (1)

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436(7047), 91–94 (2005).
[CrossRef] [PubMed]

Phys. Rev. B (1)

Z. Xu, Z. Lu, X. Yang, Z. Yuan, B. Zheng, J. Xu, W. Ge, Y. Wang, J. Wang, and L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54(16), 11528–11531 (1996).
[CrossRef]

Phys. Status Solidi, B Basic Res. (1)

M. V. Artemyev, L. I. Gurinovich, A. P. Stupak, and S. V. Gaponenko, “Luminescence of CdS nanoparticles doped with Mn,” Phys. Status Solidi, B Basic Res. 224(1), 191–194 (2001).
[CrossRef]

Proc. SPIE (1)

J. P. Wilcoxon and P. Newcomer, “Optical properties of II-VI semiconductor nanoclusters for use as phosphors,” Proc. SPIE 4808, 99–114 (2002).
[CrossRef]

Science (1)

D. J. Norris, A. L. Efros, and S. C. Erwin, “Doped nanocrystals,” Science 319(5871), 1776–1779 (2008).
[CrossRef] [PubMed]

Surf. Sci. (1)

S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci. 361-362, 778–782 (1996).
[CrossRef]

Other (2)

H. Menkara, T. R. Morris II, R. A. Gilstrap, Jr., B. K. Wagner, and C. J. Summers, “Sulfoselenide phosphors and nanophosphors for solid-state lighting” (Invited), 32nd Intern. Conference and Exposition on Advanced Ceramics and Composites, Daytona (2008).

J. A. Simmons, “Basic research needs for solid state lighting: LED science,” Sandia National Labs, APS Meeting (Mar. 2007), p. 20, http://www.aps.org/meetings/multimedia/march2007/upload/simmons.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a typical diode lamp showing the placement of the GaInN drive chip, nanophosphor and host matrix envelope that is typically fashioned to have a dome-like top.

Fig. 2
Fig. 2

Proposed nanophosphor architecture including Mn ion incorporation within the ZnSe shell for “small” and “large” ZnSe:Mn Nanophosphors.

Fig. 3
Fig. 3

LED output efficiency as a function of nanoparticle diameter for 405 and 460nm excitation wavelengths, 585 nm emission wavelength, and combined excitation and emission.

Fig. 4
Fig. 4

Relative LED phosphor emission efficiency as a function of MFP normalized to the phosphor layer thickness.

Fig. 5
Fig. 5

Particle size distribution and statistical averages for samples S01 (left) and S05 (right).

Fig. 6
Fig. 6

Broadband emission and spectral control achieved using various single component ZnSe:Mn nanocrystals under 405 nm excitation.

Fig. 7
Fig. 7

(Top) Relative absorption (dashed lines) and emission (solid lines) of ZnSe:Mn NPs with different particle sizes. (Bottom) Coulter particle size distribution of the same samples showing average sizes of 6.9nm and 17nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Mn ( C 18 H 35 O 2 ) 2 +  C 18 H 36       280 C       Mn 2 + +  2 ( ( C 18 H 35 O 2 ) 2 ) 2 −−  in a C 18 H 36 solution
Se  +   ( C 4 H 9 ) 3 P      140C       ( C 4 H 9 ) 3 PSe  +   ( C 4 H 9 ) 3 P

Metrics