Abstract

The experimental demonstrations of light-emitting diode (LED) fabrication with surface plasmon (SP) coupling with the radiating dipoles in its quantum wells are first reviewed. The SP coupling with a radiating dipole can create an alternative emission channel through SP radiation for enhancing the effective internal quantum efficiency when the intrinsic non-radiative recombination rate is high, reducing the external quantum efficiency droop effect at high current injection levels, and producing partially polarized LED output by inducing polarization-sensitive SP for coupling. Then, we report the theoretical and numerical study results of SP-dipole coupling based on a simple coupling model between a radiating dipole and the SP induced on a nearby Ag nanoparticle (NP). To include the dipole strength variation effect caused by the field distribution built in the coupling system (the feedback effect), the radiating dipole is represented by a saturable two-level system. The spectral and dipole-NP distance dependencies of dipole strength variation and total radiated power enhancement of the coupling system are demonstrated and interpreted. The results show that the dipole-SP coupling can enhance the total radiated power. The enhancement is particularly effective when the feedback effect is included and hence the dipole strength is increased.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85(6), 866–868 (2004).
    [CrossRef]
  2. Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
    [CrossRef]
  3. C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89(5), 051913 (2006).
    [CrossRef]
  4. C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
    [CrossRef]
  5. J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
    [CrossRef]
  6. B. Monemar and B. E. Sernelius, “Defect related issues in the ‘current roll-off’ in InGaN based light emitting diodes,” Appl. Phys. Lett. 91(18), 181103 (2007).
    [CrossRef]
  7. K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007).
    [CrossRef]
  8. N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007).
    [CrossRef]
  9. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
    [CrossRef]
  10. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
    [CrossRef]
  11. Y. L. Li, Y. R. Huang, and Y. H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett. 91(18), 181113 (2007).
    [CrossRef]
  12. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
    [CrossRef]
  13. I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Status Solidi A 204(1), 227–230 (2007).
    [CrossRef]
  14. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  16. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  17. A. Neogi, C.-W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
    [CrossRef]
  18. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  19. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
    [CrossRef]
  20. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: Figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007).
    [CrossRef]
  21. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
    [CrossRef]
  22. G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
    [CrossRef]
  23. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
    [CrossRef]
  24. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
    [CrossRef] [PubMed]
  25. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010).
    [CrossRef]
  26. R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
    [CrossRef]
  27. H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
    [CrossRef]
  28. H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure,” J. Phys. D Appl. Phys. 41(22), 225104 (2008).
    [CrossRef]
  29. C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
    [CrossRef]
  30. C. F. Lai, J. Y. Chi, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, and W. Y. Yeh, “Anisotropy of light extraction from GaN two-dimensional photonic crystals,” Opt. Express 16(10), 7285–7294 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-10-7285 .
    [CrossRef] [PubMed]
  31. K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
    [CrossRef]
  32. K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008).
    [CrossRef]
  33. K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
    [CrossRef]
  34. J.-Y. Wang, Y.-W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett. 91(23), 233104 (2007).
    [CrossRef]
  35. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
    [CrossRef]
  36. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
    [CrossRef]
  37. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations,” Opt. Express 17(1), 104–116 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-1-104 .
    [CrossRef] [PubMed]
  38. H. L. Chen, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures,” J. Opt. Soc. Am. B 26(5), 923–929 (2009).
    [CrossRef]
  39. G. Sun and J. B. Khurgin, “Plasmon enhancement of luminescence by metal nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 17(1), 110–118 (2011).
    [CrossRef]
  40. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).
  41. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
    [CrossRef] [PubMed]
  42. J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
    [CrossRef]
  43. S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21(45), 455401 (2010).
    [CrossRef] [PubMed]
  44. A. S. Rosenthal and T. Ghannam, “Dipole nanolasers: a study of their quantum properties,” Phys. Rev. A 79(4), 043824 (2009).
    [CrossRef]
  45. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
    [CrossRef]
  46. B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
    [CrossRef] [PubMed]
  47. P. Meystre and M. Sargent III, Elements of Quantum Optics, 4th ed. (Springer, 2007).
  48. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).

2011

G. Sun and J. B. Khurgin, “Plasmon enhancement of luminescence by metal nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 17(1), 110–118 (2011).
[CrossRef]

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
[CrossRef] [PubMed]

2010

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
[CrossRef]

S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21(45), 455401 (2010).
[CrossRef] [PubMed]

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010).
[CrossRef]

K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

2009

2008

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[CrossRef]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure,” J. Phys. D Appl. Phys. 41(22), 225104 (2008).
[CrossRef]

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

C. F. Lai, J. Y. Chi, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, and W. Y. Yeh, “Anisotropy of light extraction from GaN two-dimensional photonic crystals,” Opt. Express 16(10), 7285–7294 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-10-7285 .
[CrossRef] [PubMed]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[CrossRef]

C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
[CrossRef]

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[CrossRef]

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

2007

I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Status Solidi A 204(1), 227–230 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: Figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007).
[CrossRef]

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[CrossRef]

Y. L. Li, Y. R. Huang, and Y. H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett. 91(18), 181113 (2007).
[CrossRef]

B. Monemar and B. E. Sernelius, “Defect related issues in the ‘current roll-off’ in InGaN based light emitting diodes,” Appl. Phys. Lett. 91(18), 181103 (2007).
[CrossRef]

K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007).
[CrossRef]

N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007).
[CrossRef]

J.-Y. Wang, Y.-W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett. 91(23), 233104 (2007).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

2006

C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89(5), 051913 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

2005

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85(6), 866–868 (2004).
[CrossRef]

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

2002

A. Neogi, C.-W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Adams, D. C.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
[CrossRef] [PubMed]

Akita, K.

K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007).
[CrossRef]

Baker, T. J.

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bryant, G. W.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Byeon, C. C.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[CrossRef]

Chao, C. H.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

C. F. Lai, J. Y. Chi, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, and W. Y. Yeh, “Anisotropy of light extraction from GaN two-dimensional photonic crystals,” Opt. Express 16(10), 7285–7294 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-10-7285 .
[CrossRef] [PubMed]

Chen, C. Y.

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

Chen, G.

N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007).
[CrossRef]

Chen, H. L.

H. L. Chen, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures,” J. Opt. Soc. Am. B 26(5), 923–929 (2009).
[CrossRef]

K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008).
[CrossRef]

Chen, L. C.

C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89(5), 051913 (2006).
[CrossRef]

Chen, M. K.

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

Chen, Y. S.

C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
[CrossRef]

Cheng, Y. C.

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

Chi, J. Y.

C. F. Lai, J. Y. Chi, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, and W. Y. Yeh, “Anisotropy of light extraction from GaN two-dimensional photonic crystals,” Opt. Express 16(10), 7285–7294 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-10-7285 .
[CrossRef] [PubMed]

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

Cho, C. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[CrossRef]

Chow, W. W.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
[CrossRef] [PubMed]

Chuang, W. H.

H. L. Chen, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures,” J. Opt. Soc. Am. B 26(5), 923–929 (2009).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations,” Opt. Express 17(1), 104–116 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-1-104 .
[CrossRef] [PubMed]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Davids, P.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
[CrossRef] [PubMed]

DenBaars, S. P.

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[CrossRef]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure,” J. Phys. D Appl. Phys. 41(22), 225104 (2008).
[CrossRef]

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Detchprohm, T.

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85(6), 866–868 (2004).
[CrossRef]

Duan, S.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

Dupuis, R. D.

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Everitt, H.

A. Neogi, C.-W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Farrell, R. M.

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

Feng, Z. C.

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

Fischer, A. M.

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

Gardner, N. F.

N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007).
[CrossRef]

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[CrossRef]

Ghannam, T.

A. S. Rosenthal and T. Ghannam, “Dipole nanolasers: a study of their quantum properties,” Phys. Rev. A 79(4), 043824 (2009).
[CrossRef]

Götz, W.

N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007).
[CrossRef]

Govorov, A. O.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Hader, J.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[CrossRef]

Haskell, B. A.

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

Hsieh, C.

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010).
[CrossRef]

Hsu, C. W.

C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89(5), 051913 (2006).
[CrossRef]

Hsueh, H. T.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

C. F. Lai, J. Y. Chi, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, and W. Y. Yeh, “Anisotropy of light extraction from GaN two-dimensional photonic crystals,” Opt. Express 16(10), 7285–7294 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-10-7285 .
[CrossRef] [PubMed]

Huang, C. F.

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008).
[CrossRef]

C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89(5), 051913 (2006).
[CrossRef]

Huang, C. Y.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

Huang, J. J.

C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89(5), 051913 (2006).
[CrossRef]

Huang, Y. R.

Y. L. Li, Y. R. Huang, and Y. H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett. 91(18), 181113 (2007).
[CrossRef]

Iso, K.

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure,” J. Phys. D Appl. Phys. 41(22), 225104 (2008).
[CrossRef]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[CrossRef]

Katayama, K.

K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Khurgin, J. B.

G. Sun and J. B. Khurgin, “Plasmon enhancement of luminescence by metal nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 17(1), 110–118 (2011).
[CrossRef]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: Figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007).
[CrossRef]

Kiang, Y. W.

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010).
[CrossRef]

K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations,” Opt. Express 17(1), 104–116 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-1-104 .
[CrossRef] [PubMed]

H. L. Chen, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures,” J. Opt. Soc. Am. B 26(5), 923–929 (2009).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
[CrossRef]

Kiang, Y.-W.

J.-Y. Wang, Y.-W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett. 91(23), 233104 (2007).
[CrossRef]

Kim, B. H.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[CrossRef]

Kim, J. K.

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

Kim, J. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[CrossRef]

Kim, M. H.

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

Kitabayashi, H.

K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007).
[CrossRef]

Koch, S. W.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[CrossRef]

Krames, M. R.

N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007).
[CrossRef]

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[CrossRef]

Kuo, H. C.

C. F. Lai, J. Y. Chi, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, and W. Y. Yeh, “Anisotropy of light extraction from GaN two-dimensional photonic crystals,” Opt. Express 16(10), 7285–7294 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-10-7285 .
[CrossRef] [PubMed]

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

Kuroda, T.

A. Neogi, C.-W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Kwon, M. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[CrossRef]

Kyono, T.

K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007).
[CrossRef]

Lai, C. F.

C. F. Lai, J. Y. Chi, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, and W. Y. Yeh, “Anisotropy of light extraction from GaN two-dimensional photonic crystals,” Opt. Express 16(10), 7285–7294 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-10-7285 .
[CrossRef] [PubMed]

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

Lai, Y. H.

Y. L. Li, Y. R. Huang, and Y. H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett. 91(18), 181113 (2007).
[CrossRef]

Lee, C.-W.

A. Neogi, C.-W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Lee, S. M.

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

Lee, W.

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

Li, G. A.

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

Li, P.

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85(6), 866–868 (2004).
[CrossRef]

Li, Y. L.

Y. L. Li, Y. R. Huang, and Y. H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett. 91(18), 181113 (2007).
[CrossRef]

Liao, C. H.

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010).
[CrossRef]

K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

Limb, J.

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

Lin, C. H.

K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

Linder, N.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[CrossRef]

Liu, J. P.

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

Liu, T. C.

C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
[CrossRef]

Lu, C. F.

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010).
[CrossRef]

C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
[CrossRef]

Lu, Y. C.

C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

Lutgen, S.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[CrossRef]

Lyon, S.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
[CrossRef] [PubMed]

Ma, K. J.

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

Masui, H.

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[CrossRef]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure,” J. Phys. D Appl. Phys. 41(22), 225104 (2008).
[CrossRef]

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

Moloney, J. V.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[CrossRef]

Monemar, B.

B. Monemar and B. E. Sernelius, “Defect related issues in the ‘current roll-off’ in InGaN based light emitting diodes,” Appl. Phys. Lett. 91(18), 181103 (2007).
[CrossRef]

Mueller, G. O.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Müller, G. O.

N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007).
[CrossRef]

Munkholm, A.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[CrossRef]

Nakamura, S.

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[CrossRef]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure,” J. Phys. D Appl. Phys. 41(22), 225104 (2008).
[CrossRef]

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nelson, J. S.

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85(6), 866–868 (2004).
[CrossRef]

Neogi, A.

A. Neogi, C.-W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Park, I. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[CrossRef]

Park, S. J.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[CrossRef]

Park, Y.

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

Pasenow, B.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[CrossRef]

Passmore, B. S.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
[CrossRef] [PubMed]

Pattison, P. M.

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

Ponce, F. A.

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

Ribaudo, T.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
[CrossRef] [PubMed]

Rosenauer, A.

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

Rosenthal, A. S.

A. S. Rosenthal and T. Ghannam, “Dipole nanolasers: a study of their quantum properties,” Phys. Rev. A 79(4), 043824 (2009).
[CrossRef]

Rozhansky, I. V.

I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Status Solidi A 204(1), 227–230 (2007).
[CrossRef]

Ryou, J. H.

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

Sabathil, M.

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[CrossRef]

Sadeghi, S. M.

S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21(45), 455401 (2010).
[CrossRef] [PubMed]

Sakong, T.

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

Salagaj, T.

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85(6), 866–868 (2004).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Schubert, E. F.

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

Schubert, M. F.

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

Sernelius, B. E.

B. Monemar and B. E. Sernelius, “Defect related issues in the ‘current roll-off’ in InGaN based light emitting diodes,” Appl. Phys. Lett. 91(18), 181103 (2007).
[CrossRef]

Shaner, E. A.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
[CrossRef] [PubMed]

Sharma, R.

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

Shen, K. C.

K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
[CrossRef]

Shen, Y. C.

N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007).
[CrossRef]

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[CrossRef]

Shiao, W. Y.

C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
[CrossRef]

C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89(5), 051913 (2006).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Sone, C.

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

Soref, R. A.

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: Figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[CrossRef]

Speck, J. S.

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
[CrossRef]

Sun, G.

G. Sun and J. B. Khurgin, “Plasmon enhancement of luminescence by metal nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 17(1), 110–118 (2011).
[CrossRef]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: Figures of merit,” J. Opt. Soc. Am. B 24(8), 1968–1980 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[CrossRef]

Tackeuchi, A.

A. Neogi, C.-W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Tang, T. Y.

C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89(5), 051913 (2006).
[CrossRef]

Wang, J. F. T.

C. F. Lai, J. Y. Chi, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, and W. Y. Yeh, “Anisotropy of light extraction from GaN two-dimensional photonic crystals,” Opt. Express 16(10), 7285–7294 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-10-7285 .
[CrossRef] [PubMed]

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

Wang, J. K.

C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
[CrossRef]

Wang, J. Y.

K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations,” Opt. Express 17(1), 104–116 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-1-104 .
[CrossRef] [PubMed]

H. L. Chen, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures,” J. Opt. Soc. Am. B 26(5), 923–929 (2009).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
[CrossRef]

Wang, J.-Y.

J.-Y. Wang, Y.-W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett. 91(23), 233104 (2007).
[CrossRef]

Wasserman, D.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
[CrossRef] [PubMed]

Watanabe, S.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[CrossRef]

N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007).
[CrossRef]

Wetzel, C.

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85(6), 866–868 (2004).
[CrossRef]

Wu, C. M.

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

Wu, F.

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

Wu, Z. H.

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

Xu, J.

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

Yablonovitch, E.

A. Neogi, C.-W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Yamada, H.

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[CrossRef]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure,” J. Phys. D Appl. Phys. 41(22), 225104 (2008).
[CrossRef]

Yan, J. Y.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

Yang, C. C.

K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010).
[CrossRef]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
[CrossRef]

H. L. Chen, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Characteristics of light emitter coupling with surface plasmons in air/metal/dielectric grating structures,” J. Opt. Soc. Am. B 26(5), 923–929 (2009).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations,” Opt. Express 17(1), 104–116 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-1-104 .
[CrossRef] [PubMed]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

J.-Y. Wang, Y.-W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett. 91(23), 233104 (2007).
[CrossRef]

C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89(5), 051913 (2006).
[CrossRef]

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

Yang, J. R.

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

Yang, Y. J.

K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
[CrossRef]

Yeh, D. M.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

Yeh, W. Y.

C. F. Lai, J. Y. Chi, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, and W. Y. Yeh, “Anisotropy of light extraction from GaN two-dimensional photonic crystals,” Opt. Express 16(10), 7285–7294 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-10-7285 .
[CrossRef] [PubMed]

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

Yen, H. H.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

Yoo, D.

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

Yoon, S.

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

Yoshizumi, Y.

K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007).
[CrossRef]

Yu, Z. Y.

K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

Zakheim, D. A.

I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Status Solidi A 204(1), 227–230 (2007).
[CrossRef]

Zhang, W.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhao, X. G.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[CrossRef]

Appl. Phys. Lett.

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96(26), 261104 (2010).
[CrossRef]

R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett. 87(23), 231110 (2005).
[CrossRef]

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of InGaN/GaN light-emitting diodes fabricated on GaN substrates oriented between (10-10) and (10-1-1) planes,” Appl. Phys. Lett. 92(9), 091105 (2008).
[CrossRef]

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92(24), 243118 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, C. F. Huang, J. Y. Wang, Y. C. Lu, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92(1), 013108 (2008).
[CrossRef]

K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93(23), 231111 (2008).
[CrossRef]

J.-Y. Wang, Y.-W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett. 91(23), 233104 (2007).
[CrossRef]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85(6), 866–868 (2004).
[CrossRef]

Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, “Improvements of InGaN/GaN quantum well interfaces and radiative efficiency with InN interfacial layers,” Appl. Phys. Lett. 84(26), 5422–5424 (2004).
[CrossRef]

C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett. 89(5), 051913 (2006).
[CrossRef]

N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506 (2007).
[CrossRef]

J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26), 261103 (2008).
[CrossRef]

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[CrossRef]

Y. L. Li, Y. R. Huang, and Y. H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett. 91(18), 181113 (2007).
[CrossRef]

M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4), 041102 (2008).
[CrossRef]

J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008).
[CrossRef]

B. Monemar and B. E. Sernelius, “Defect related issues in the ‘current roll-off’ in InGaN based light emitting diodes,” Appl. Phys. Lett. 91(18), 181103 (2007).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

G. Sun and J. B. Khurgin, “Plasmon enhancement of luminescence by metal nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 17(1), 110–118 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[CrossRef]

J. Appl. Phys.

K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101(3), 033104 (2007).
[CrossRef]

C. F. Huang, T. C. Liu, Y. C. Lu, W. Y. Shiao, Y. S. Chen, J. K. Wang, C. F. Lu, and C. C. Yang, “Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth,” J. Appl. Phys. 104(12), 123106 (2008).
[CrossRef]

J. Opt.

M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12(2), 024004 (2010).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

J. Phys. D Appl. Phys.

H. Masui, H. Yamada, K. Iso, S. Nakamura, and S. P. DenBaars, “Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure,” J. Phys. D Appl. Phys. 41(22), 225104 (2008).
[CrossRef]

Nano Lett.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11(2), 338–342 (2011).
[CrossRef] [PubMed]

Nanotechnology

S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21(45), 455401 (2010).
[CrossRef] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. A

A. S. Rosenthal and T. Ghannam, “Dipole nanolasers: a study of their quantum properties,” Phys. Rev. A 79(4), 043824 (2009).
[CrossRef]

Phys. Rev. B

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

A. Neogi, C.-W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Phys. Rev. Lett.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi A

I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Status Solidi A 204(1), 227–230 (2007).
[CrossRef]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).

P. Meystre and M. Sargent III, Elements of Quantum Optics, 4th ed. (Springer, 2007).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Geometry of the dipole-NP system, including a spherical Ag NP with radius R centered at the coordinate origin and a radiating dipole located at (0, 0, a), which is represented by an arrow.

Fig. 2
Fig. 2

Spectral dependencies of | p | / p 0 on wavelength in the case of x-oriented dipole for a = 40, 60, 80, 100, and 120 nm.

Fig. 3
Fig. 3

Dipole-NP distance dependencies of the maximum | p | / p 0 and the corresponding wavelength in the case of x-oriented dipole.

Fig. 4
Fig. 4

Spectral dependencies of | p | / p 0 on wavelength in the case of z-oriented dipole for a = 40, 60, 80, 100, and 120 nm.

Fig. 5
Fig. 5

Dipole-NP distance dependencies of the maximum | p | / p 0 and the corresponding wavelength in the case of z-oriented dipole.

Fig. 6
Fig. 6

Spectral dependencies of total radiated power enhancement ratio on wavelength in the case of x-oriented dipole for a = 40, 60, 80, 100, and 120 nm.

Fig. 7
Fig. 7

Dipole-NP distance dependencies of the maximum total radiated power enhancement ratio and the corresponding wavelength in the case of x-oriented dipole. Both the results under the conditions with the feedback effect (wF) and without this effect (w/oF) are plotted.

Fig. 8
Fig. 8

Spectral dependencies of total radiated power enhancement ratio on wavelength in the case of z-oriented dipole for a = 40, 60, 80, 100, and 120 nm.

Fig. 9
Fig. 9

Dipole-NP distance dependencies of the maximum total radiated power enhancement ratio and the corresponding wavelength in the case of z-oriented dipole. Both the results under the conditions with the feedback effect (wF) and without this effect (w/oF) are plotted.

Fig. 10
Fig. 10

Spectral dependencies of g(λ) for the cases of x- and z-oriented dipoles at a = 40 nm.

Fig. 11
Fig. 11

Radiation patterns of the dipole-NP system in the case of x-oriented dipole at the wavelengths of 520.7 ((a) and (b)), 571.2 ((c) and (d)), and 610 nm ((e) and (f)) when a is equal to 40 nm. Parts (a), (c), and (e) ((b), (d), and (f)) demonstrate the patterns when the azimuth angle is 0 (π/2). Three radiation patterns are plotted in each part, including the cases with the feedback effect (black solid curve) and without the feedback effect (blue dashed curve), and the case of the dipole alone (red dash-dotted curve). The two arrows of opposite orientations in each part represent the radiating dipole and the dominating mirror dipole of LSP resonance in the Ag NP.

Fig. 12
Fig. 12

Radiation patterns of the dipole-NP system in the case of z-oriented dipole at 450 (a), 523.6 (b), 587.2 (c), and 634.7 nm (d) when a = 40 nm. In this situation, the two effective dipoles are roughly in the same orientation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E ( s ) = z ^ p ¯ z E 0 f z
E ( s ) = x ^ p ¯ x E 0 f x
f z = n = 1 n ( n + 1 ) a n h n ( 1 ) ( k b a ) ,
f x = n = 1 2 n + 1 2 { α n ( d r h n ( 1 ) ( k b r ) d r ) r = a + β n h n ( 1 ) ( k b a ) } ,
a n = i ( 2 n + 1 ) k b a h n ( 1 ) ( k b a ) ( ε ¯ j n ( k m R ) ( d r j n ( k b r ) d r ) | r = R j n ( k b R ) ( d r j n ( k m r ) d r ) | r = R ) ( ε ¯ j n ( k m R ) ( d r h n ( 1 ) ( k b r ) d r ) | r = R h n ( 1 ) ( k b R ) ( d r j n ( k m r ) d r ) | r = R ) ,
α n = i k b a ( d r h n ( 1 ) ( k b r ) d r ) | r = a { ε ¯ ( d r j n ( k b r ) d r ) | r = R j n ( k m R ) j n ( k b R ) ( d r j n ( k m r ) d r ) | r = R ε ¯ ( d r h n ( 1 ) ( k b r ) d r ) | r = R j n ( k m R ) h n ( 1 ) ( k b R ) ( d r j n ( k m r ) d r ) | r = R } ,
β n = i k b 3 a 3 h n ( 1 ) ( k b a ) { ( d r j n ( k b r ) d r ) | r = R j n ( k m R ) j n ( k b R ) ( d r j n ( k m r ) d r ) | r = R ( d r h n ( 1 ) ( k b r ) d r ) | r = R j n ( k m R ) h n ( 1 ) ( k b R ) ( d r j n ( k m r ) d r ) | r = R } ,
ζ = | f i | | 1 + A f i 1 + B ζ 2 | .
p i = p 0 1 + A f i 1 + B ζ 2 .

Metrics