Abstract

We report on photoluminescence of vanadium-doped lithium zinc silicate glasses and corresponding nanocrystalline Li2ZnSiO4 glass ceramics as broadband UV-to-VIS photoconverters. Depending on dopant concentration and synthesis conditions, VIS photoemission from [VO4]3- is centered at 550-590 nm and occurs over a bandwidth (FWHM) of ~250 nm. The corresponding excitation band covers the complete UV-B to UV-A spectral region. In as-melted glasses, the emission lifetime is about 34 μs up to a nominal dopant concentration of 0.5 mol%. In the glass ceramic, it increases to about 45 μs. For higher dopant concentration, a sharp drop in emission lifetime was observed, what is interpreted as a result of concentration quenching. Self-quenching is further promoted by energy transfer to V4+ centers (2Гt42Гt3). Partitioning of vanadium into V5+ and V4+ was examined by electron paramagnetic resonance and X-ray photoelectron spectroscopy. Suppression of V5+-reduction requires careful adjustment of the optical basicity of the host glass and/or synthesis conditions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
    [CrossRef]
  2. J. El Ghoul, C. Barthou, M. Saadoun, and L. El Mir, “Optical characterization of SiO2/Zn2SiO4:V nanocomposite obtained after the incorporation of ZnO:V nanoparticles in silica host matrix,” J. Phys. Chem. Solids 71(3), 194–198 (2010).
    [CrossRef]
  3. M. Anpo, I. Tanahashi, and Y. Kubokawa, “Photoluminescence and photoreduction of V2O5 supported on porous vycor glass,” J. Phys. Chem. 84(25), 3440–3443 (1980).
    [CrossRef]
  4. S. Dzwigaj, M. Matsuoka, M. Anpo, and M. Che, “Evidence of three kinds of tetrahedral vanadium (V) species in VSiß zeolite by diffuse reflectance UV-Visible and photoluminescence spectroscopies,” J. Phys. Chem. B 104(25), 6012–6020 (2000).
    [CrossRef]
  5. M. Morita, S. Kajiyama, T. Kai, D. Rau, and T. Sakurai, “Physicochemical control of valence in luminescence of Cr(III) and V (III, IV) complexes embedded in xero-gel and sol-gel SiO2 glasses,” J. Lumin. 94–95, 91–95 (2001).
    [CrossRef]
  6. S. Dzwigaj, J. Krafft, M. Che, S. Lim, and G. L. Haller, “Photoluminescence study of the introduction of V in Si-MSM-41: role of surface defects and their associated SiO- and SiOH groups,” J. Phys. Chem. B 107(16), 3856–3861 (2003).
    [CrossRef]
  7. areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:.
    [CrossRef]
  8. W. Höland and G. H. Beall, Glass Ceramic Technology (American Ceramic Society, 2002).
  9. G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express 18(S4Suppl 4), A575–A583 (2010).
    [CrossRef] [PubMed]
  10. G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramics phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
    [CrossRef]
  11. A. R. West and F. P. Glasser, “Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds,” J. Solid State Chem. 4(1), 20–28 (1972).
    [CrossRef]
  12. N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+, Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010).
    [CrossRef] [PubMed]
  13. Z. B. Kea, A. X. Lub, and G. F. Huang, “Effect of K2O addition on crystallization and microstructure of Li2O-ZnO-Al2O3-SiO2 system glass-ceramics,” Adv. Mater. Res. 11-12, 205–208 (2006).
    [CrossRef]
  14. Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
    [CrossRef]
  15. C. K. Jørgensen, S. Döger, M. Frydman, and L. G. Sillén, “Comparative ligand field studies IV. vandium (IV), titanium (III) and other systems with one d-electron,” Acta Chem. Scand. 11, 73–85 (1957).
    [CrossRef]
  16. C. J. Ballhausen and H. B. Gray, “The electronic structure of the vanadyl ion,” Inorg. Chem. 1(1), 111–122 (1962).
    [CrossRef]
  17. W. D. Johnston, “Optical spectra of the various valence states of vanadium in Na2O·2SiO2 glass,” J. Am. Ceram. Soc. 48(12), 608–611 (1965).
    [CrossRef]
  18. M. Shareefuddin, M. Jamal, G. Ramadevudu, M. Lakshmipati Rao, and M. N. Chary, “Electron paramagnetic resonance spectra of VO2+ ions in NaI-Na2O-K2O-B2O3 mixed alkali glasses,” J. Non-Cryst. Solids 255(2-3), 228–232 (1999).
    [CrossRef]
  19. L. D. Bogomolova, A. N. Khabarova, E. V. Klimashina, N. A. Krasil'nikova, and V. A. Jachkin, “EPR of V4+ ions in silica glass, 20,” J. Non-Cryst. Solids 103(2-3), 319–324 (1988).
    [CrossRef]
  20. H. Farah, “An EPR characterization of vanadium in CaO and Na2O based Al2O3-SiO2 glasses,” J. Alloy. Comp. 453(1-2), 288–291 (2008).
    [CrossRef]
  21. T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, and N. Veeraiah, “Microstructure, dielectric and spectroscopic properties of Li2O-Nb2O5-ZrO2-SiO2 glass system crystallized with V2O5,” J. Phys. Chem. Solids 72(3), 190–200 (2011), doi:.
    [CrossRef]
  22. J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
    [CrossRef]
  23. H. Bach, F. G. K. Baucke, and D. Krause, Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes (Springer-Verlag, 2001). p. 293.
  24. Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
    [CrossRef]
  25. C. Hsu and R. C. Powell, “Energy transfer in europium doped yttrium vanadate crystals,” J. Lumin. 10(5), 273–293 (1975).
    [CrossRef]
  26. A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, and X. Y. Li, “Effect of heat-treatmentcondition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO-Al2O3–SiO2–P2O5 glass–ceramics,” J. Non-Cryst. Solids 353(28), 2692–2697 (2007).
    [CrossRef]

2011 (3)

areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:.
[CrossRef]

T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, and N. Veeraiah, “Microstructure, dielectric and spectroscopic properties of Li2O-Nb2O5-ZrO2-SiO2 glass system crystallized with V2O5,” J. Phys. Chem. Solids 72(3), 190–200 (2011), doi:.
[CrossRef]

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramics phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

2010 (4)

N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+, Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010).
[CrossRef] [PubMed]

G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express 18(S4Suppl 4), A575–A583 (2010).
[CrossRef] [PubMed]

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[CrossRef]

J. El Ghoul, C. Barthou, M. Saadoun, and L. El Mir, “Optical characterization of SiO2/Zn2SiO4:V nanocomposite obtained after the incorporation of ZnO:V nanoparticles in silica host matrix,” J. Phys. Chem. Solids 71(3), 194–198 (2010).
[CrossRef]

2009 (1)

Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

2008 (2)

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

H. Farah, “An EPR characterization of vanadium in CaO and Na2O based Al2O3-SiO2 glasses,” J. Alloy. Comp. 453(1-2), 288–291 (2008).
[CrossRef]

2007 (1)

A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, and X. Y. Li, “Effect of heat-treatmentcondition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO-Al2O3–SiO2–P2O5 glass–ceramics,” J. Non-Cryst. Solids 353(28), 2692–2697 (2007).
[CrossRef]

2006 (1)

Z. B. Kea, A. X. Lub, and G. F. Huang, “Effect of K2O addition on crystallization and microstructure of Li2O-ZnO-Al2O3-SiO2 system glass-ceramics,” Adv. Mater. Res. 11-12, 205–208 (2006).
[CrossRef]

2003 (1)

S. Dzwigaj, J. Krafft, M. Che, S. Lim, and G. L. Haller, “Photoluminescence study of the introduction of V in Si-MSM-41: role of surface defects and their associated SiO- and SiOH groups,” J. Phys. Chem. B 107(16), 3856–3861 (2003).
[CrossRef]

2001 (1)

M. Morita, S. Kajiyama, T. Kai, D. Rau, and T. Sakurai, “Physicochemical control of valence in luminescence of Cr(III) and V (III, IV) complexes embedded in xero-gel and sol-gel SiO2 glasses,” J. Lumin. 94–95, 91–95 (2001).
[CrossRef]

2000 (1)

S. Dzwigaj, M. Matsuoka, M. Anpo, and M. Che, “Evidence of three kinds of tetrahedral vanadium (V) species in VSiß zeolite by diffuse reflectance UV-Visible and photoluminescence spectroscopies,” J. Phys. Chem. B 104(25), 6012–6020 (2000).
[CrossRef]

1999 (1)

M. Shareefuddin, M. Jamal, G. Ramadevudu, M. Lakshmipati Rao, and M. N. Chary, “Electron paramagnetic resonance spectra of VO2+ ions in NaI-Na2O-K2O-B2O3 mixed alkali glasses,” J. Non-Cryst. Solids 255(2-3), 228–232 (1999).
[CrossRef]

1993 (1)

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[CrossRef]

1988 (1)

L. D. Bogomolova, A. N. Khabarova, E. V. Klimashina, N. A. Krasil'nikova, and V. A. Jachkin, “EPR of V4+ ions in silica glass, 20,” J. Non-Cryst. Solids 103(2-3), 319–324 (1988).
[CrossRef]

1980 (1)

M. Anpo, I. Tanahashi, and Y. Kubokawa, “Photoluminescence and photoreduction of V2O5 supported on porous vycor glass,” J. Phys. Chem. 84(25), 3440–3443 (1980).
[CrossRef]

1975 (1)

C. Hsu and R. C. Powell, “Energy transfer in europium doped yttrium vanadate crystals,” J. Lumin. 10(5), 273–293 (1975).
[CrossRef]

1972 (1)

A. R. West and F. P. Glasser, “Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds,” J. Solid State Chem. 4(1), 20–28 (1972).
[CrossRef]

1965 (1)

W. D. Johnston, “Optical spectra of the various valence states of vanadium in Na2O·2SiO2 glass,” J. Am. Ceram. Soc. 48(12), 608–611 (1965).
[CrossRef]

1962 (1)

C. J. Ballhausen and H. B. Gray, “The electronic structure of the vanadyl ion,” Inorg. Chem. 1(1), 111–122 (1962).
[CrossRef]

1957 (1)

C. K. Jørgensen, S. Döger, M. Frydman, and L. G. Sillén, “Comparative ligand field studies IV. vandium (IV), titanium (III) and other systems with one d-electron,” Acta Chem. Scand. 11, 73–85 (1957).
[CrossRef]

Anpo, M.

S. Dzwigaj, M. Matsuoka, M. Anpo, and M. Che, “Evidence of three kinds of tetrahedral vanadium (V) species in VSiß zeolite by diffuse reflectance UV-Visible and photoluminescence spectroscopies,” J. Phys. Chem. B 104(25), 6012–6020 (2000).
[CrossRef]

M. Anpo, I. Tanahashi, and Y. Kubokawa, “Photoluminescence and photoreduction of V2O5 supported on porous vycor glass,” J. Phys. Chem. 84(25), 3440–3443 (1980).
[CrossRef]

Ballhausen, C. J.

C. J. Ballhausen and H. B. Gray, “The electronic structure of the vanadyl ion,” Inorg. Chem. 1(1), 111–122 (1962).
[CrossRef]

Barthou, C.

J. El Ghoul, C. Barthou, M. Saadoun, and L. El Mir, “Optical characterization of SiO2/Zn2SiO4:V nanocomposite obtained after the incorporation of ZnO:V nanoparticles in silica host matrix,” J. Phys. Chem. Solids 71(3), 194–198 (2010).
[CrossRef]

Bogomolova, L. D.

L. D. Bogomolova, A. N. Khabarova, E. V. Klimashina, N. A. Krasil'nikova, and V. A. Jachkin, “EPR of V4+ ions in silica glass, 20,” J. Non-Cryst. Solids 103(2-3), 319–324 (1988).
[CrossRef]

Chary, M. N.

M. Shareefuddin, M. Jamal, G. Ramadevudu, M. Lakshmipati Rao, and M. N. Chary, “Electron paramagnetic resonance spectra of VO2+ ions in NaI-Na2O-K2O-B2O3 mixed alkali glasses,” J. Non-Cryst. Solids 255(2-3), 228–232 (1999).
[CrossRef]

Che, M.

S. Dzwigaj, J. Krafft, M. Che, S. Lim, and G. L. Haller, “Photoluminescence study of the introduction of V in Si-MSM-41: role of surface defects and their associated SiO- and SiOH groups,” J. Phys. Chem. B 107(16), 3856–3861 (2003).
[CrossRef]

S. Dzwigaj, M. Matsuoka, M. Anpo, and M. Che, “Evidence of three kinds of tetrahedral vanadium (V) species in VSiß zeolite by diffuse reflectance UV-Visible and photoluminescence spectroscopies,” J. Phys. Chem. B 104(25), 6012–6020 (2000).
[CrossRef]

Cheng, Z.

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[CrossRef]

Chi, Y.

Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Da, N.

Döger, S.

C. K. Jørgensen, S. Döger, M. Frydman, and L. G. Sillén, “Comparative ligand field studies IV. vandium (IV), titanium (III) and other systems with one d-electron,” Acta Chem. Scand. 11, 73–85 (1957).
[CrossRef]

Duffy, J. A.

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[CrossRef]

Dzwigaj, S.

S. Dzwigaj, J. Krafft, M. Che, S. Lim, and G. L. Haller, “Photoluminescence study of the introduction of V in Si-MSM-41: role of surface defects and their associated SiO- and SiOH groups,” J. Phys. Chem. B 107(16), 3856–3861 (2003).
[CrossRef]

S. Dzwigaj, M. Matsuoka, M. Anpo, and M. Che, “Evidence of three kinds of tetrahedral vanadium (V) species in VSiß zeolite by diffuse reflectance UV-Visible and photoluminescence spectroscopies,” J. Phys. Chem. B 104(25), 6012–6020 (2000).
[CrossRef]

El Ghoul, J.

J. El Ghoul, C. Barthou, M. Saadoun, and L. El Mir, “Optical characterization of SiO2/Zn2SiO4:V nanocomposite obtained after the incorporation of ZnO:V nanoparticles in silica host matrix,” J. Phys. Chem. Solids 71(3), 194–198 (2010).
[CrossRef]

El Mir, L.

J. El Ghoul, C. Barthou, M. Saadoun, and L. El Mir, “Optical characterization of SiO2/Zn2SiO4:V nanocomposite obtained after the incorporation of ZnO:V nanoparticles in silica host matrix,” J. Phys. Chem. Solids 71(3), 194–198 (2010).
[CrossRef]

Farah, H.

H. Farah, “An EPR characterization of vanadium in CaO and Na2O based Al2O3-SiO2 glasses,” J. Alloy. Comp. 453(1-2), 288–291 (2008).
[CrossRef]

Frydman, M.

C. K. Jørgensen, S. Döger, M. Frydman, and L. G. Sillén, “Comparative ligand field studies IV. vandium (IV), titanium (III) and other systems with one d-electron,” Acta Chem. Scand. 11, 73–85 (1957).
[CrossRef]

Fujimoto, Y.

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

Gandhi, Y.

T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, and N. Veeraiah, “Microstructure, dielectric and spectroscopic properties of Li2O-Nb2O5-ZrO2-SiO2 glass system crystallized with V2O5,” J. Phys. Chem. Solids 72(3), 190–200 (2011), doi:.
[CrossRef]

Gao, G.

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramics phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express 18(S4Suppl 4), A575–A583 (2010).
[CrossRef] [PubMed]

Glasser, F. P.

A. R. West and F. P. Glasser, “Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds,” J. Solid State Chem. 4(1), 20–28 (1972).
[CrossRef]

Gray, H. B.

C. J. Ballhausen and H. B. Gray, “The electronic structure of the vanadyl ion,” Inorg. Chem. 1(1), 111–122 (1962).
[CrossRef]

Haller, G. L.

S. Dzwigaj, J. Krafft, M. Che, S. Lim, and G. L. Haller, “Photoluminescence study of the introduction of V in Si-MSM-41: role of surface defects and their associated SiO- and SiOH groups,” J. Phys. Chem. B 107(16), 3856–3861 (2003).
[CrossRef]

Hanamura, E.

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

Hou, Z.

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[CrossRef]

Hsu, C.

C. Hsu and R. C. Powell, “Energy transfer in europium doped yttrium vanadate crystals,” J. Lumin. 10(5), 273–293 (1975).
[CrossRef]

Huang, G. F.

Z. B. Kea, A. X. Lub, and G. F. Huang, “Effect of K2O addition on crystallization and microstructure of Li2O-ZnO-Al2O3-SiO2 system glass-ceramics,” Adv. Mater. Res. 11-12, 205–208 (2006).
[CrossRef]

Huang, S.

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[CrossRef]

Izumi, K.

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

Jachkin, V. A.

L. D. Bogomolova, A. N. Khabarova, E. V. Klimashina, N. A. Krasil'nikova, and V. A. Jachkin, “EPR of V4+ ions in silica glass, 20,” J. Non-Cryst. Solids 103(2-3), 319–324 (1988).
[CrossRef]

Jamal, M.

M. Shareefuddin, M. Jamal, G. Ramadevudu, M. Lakshmipati Rao, and M. N. Chary, “Electron paramagnetic resonance spectra of VO2+ ions in NaI-Na2O-K2O-B2O3 mixed alkali glasses,” J. Non-Cryst. Solids 255(2-3), 228–232 (1999).
[CrossRef]

Johnston, W. D.

W. D. Johnston, “Optical spectra of the various valence states of vanadium in Na2O·2SiO2 glass,” J. Am. Ceram. Soc. 48(12), 608–611 (1965).
[CrossRef]

Jørgensen, C. K.

C. K. Jørgensen, S. Döger, M. Frydman, and L. G. Sillén, “Comparative ligand field studies IV. vandium (IV), titanium (III) and other systems with one d-electron,” Acta Chem. Scand. 11, 73–85 (1957).
[CrossRef]

Kai, T.

M. Morita, S. Kajiyama, T. Kai, D. Rau, and T. Sakurai, “Physicochemical control of valence in luminescence of Cr(III) and V (III, IV) complexes embedded in xero-gel and sol-gel SiO2 glasses,” J. Lumin. 94–95, 91–95 (2001).
[CrossRef]

Kajiyama, S.

M. Morita, S. Kajiyama, T. Kai, D. Rau, and T. Sakurai, “Physicochemical control of valence in luminescence of Cr(III) and V (III, IV) complexes embedded in xero-gel and sol-gel SiO2 glasses,” J. Lumin. 94–95, 91–95 (2001).
[CrossRef]

Kawabe, Y.

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

Ke, Z. B.

A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, and X. Y. Li, “Effect of heat-treatmentcondition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO-Al2O3–SiO2–P2O5 glass–ceramics,” J. Non-Cryst. Solids 353(28), 2692–2697 (2007).
[CrossRef]

Kea, Z. B.

Z. B. Kea, A. X. Lub, and G. F. Huang, “Effect of K2O addition on crystallization and microstructure of Li2O-ZnO-Al2O3-SiO2 system glass-ceramics,” Adv. Mater. Res. 11-12, 205–208 (2006).
[CrossRef]

Khabarova, A. N.

L. D. Bogomolova, A. N. Khabarova, E. V. Klimashina, N. A. Krasil'nikova, and V. A. Jachkin, “EPR of V4+ ions in silica glass, 20,” J. Non-Cryst. Solids 103(2-3), 319–324 (1988).
[CrossRef]

Klimashina, E. V.

L. D. Bogomolova, A. N. Khabarova, E. V. Klimashina, N. A. Krasil'nikova, and V. A. Jachkin, “EPR of V4+ ions in silica glass, 20,” J. Non-Cryst. Solids 103(2-3), 319–324 (1988).
[CrossRef]

Krafft, J.

S. Dzwigaj, J. Krafft, M. Che, S. Lim, and G. L. Haller, “Photoluminescence study of the introduction of V in Si-MSM-41: role of surface defects and their associated SiO- and SiOH groups,” J. Phys. Chem. B 107(16), 3856–3861 (2003).
[CrossRef]

Krasil'nikova, N. A.

L. D. Bogomolova, A. N. Khabarova, E. V. Klimashina, N. A. Krasil'nikova, and V. A. Jachkin, “EPR of V4+ ions in silica glass, 20,” J. Non-Cryst. Solids 103(2-3), 319–324 (1988).
[CrossRef]

Krolikowski, S.

Kubokawa, Y.

M. Anpo, I. Tanahashi, and Y. Kubokawa, “Photoluminescence and photoreduction of V2O5 supported on porous vycor glass,” J. Phys. Chem. 84(25), 3440–3443 (1980).
[CrossRef]

Lakshmipati Rao, M.

M. Shareefuddin, M. Jamal, G. Ramadevudu, M. Lakshmipati Rao, and M. N. Chary, “Electron paramagnetic resonance spectra of VO2+ ions in NaI-Na2O-K2O-B2O3 mixed alkali glasses,” J. Non-Cryst. Solids 255(2-3), 228–232 (1999).
[CrossRef]

Li, X. Y.

A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, and X. Y. Li, “Effect of heat-treatmentcondition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO-Al2O3–SiO2–P2O5 glass–ceramics,” J. Non-Cryst. Solids 353(28), 2692–2697 (2007).
[CrossRef]

Lim, S.

S. Dzwigaj, J. Krafft, M. Che, S. Lim, and G. L. Haller, “Photoluminescence study of the introduction of V in Si-MSM-41: role of surface defects and their associated SiO- and SiOH groups,” J. Phys. Chem. B 107(16), 3856–3861 (2003).
[CrossRef]

Lin, J.

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[CrossRef]

Lu, A. X.

A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, and X. Y. Li, “Effect of heat-treatmentcondition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO-Al2O3–SiO2–P2O5 glass–ceramics,” J. Non-Cryst. Solids 353(28), 2692–2697 (2007).
[CrossRef]

Lub, A. X.

Z. B. Kea, A. X. Lub, and G. F. Huang, “Effect of K2O addition on crystallization and microstructure of Li2O-ZnO-Al2O3-SiO2 system glass-ceramics,” Adv. Mater. Res. 11-12, 205–208 (2006).
[CrossRef]

Luo, J.

Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Matsuoka, M.

S. Dzwigaj, M. Matsuoka, M. Anpo, and M. Che, “Evidence of three kinds of tetrahedral vanadium (V) species in VSiß zeolite by diffuse reflectance UV-Visible and photoluminescence spectroscopies,” J. Phys. Chem. B 104(25), 6012–6020 (2000).
[CrossRef]

Miyazaki, S.

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

Morita, M.

M. Morita, S. Kajiyama, T. Kai, D. Rau, and T. Sakurai, “Physicochemical control of valence in luminescence of Cr(III) and V (III, IV) complexes embedded in xero-gel and sol-gel SiO2 glasses,” J. Lumin. 94–95, 91–95 (2001).
[CrossRef]

Peng, M.

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramics phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+, Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010).
[CrossRef] [PubMed]

Peng, M. Y.

areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:.
[CrossRef]

Powell, R. C.

C. Hsu and R. C. Powell, “Energy transfer in europium doped yttrium vanadate crystals,” J. Lumin. 10(5), 273–293 (1975).
[CrossRef]

Qiu, J.

Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Qiu, J. R.

areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:.
[CrossRef]

Ramadevudu, G.

M. Shareefuddin, M. Jamal, G. Ramadevudu, M. Lakshmipati Rao, and M. N. Chary, “Electron paramagnetic resonance spectra of VO2+ ions in NaI-Na2O-K2O-B2O3 mixed alkali glasses,” J. Non-Cryst. Solids 255(2-3), 228–232 (1999).
[CrossRef]

Rau, D.

M. Morita, S. Kajiyama, T. Kai, D. Rau, and T. Sakurai, “Physicochemical control of valence in luminescence of Cr(III) and V (III, IV) complexes embedded in xero-gel and sol-gel SiO2 glasses,” J. Lumin. 94–95, 91–95 (2001).
[CrossRef]

Ravikumar, V.

T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, and N. Veeraiah, “Microstructure, dielectric and spectroscopic properties of Li2O-Nb2O5-ZrO2-SiO2 glass system crystallized with V2O5,” J. Phys. Chem. Solids 72(3), 190–200 (2011), doi:.
[CrossRef]

Reibstein, S.

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramics phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express 18(S4Suppl 4), A575–A583 (2010).
[CrossRef] [PubMed]

Saadoun, M.

J. El Ghoul, C. Barthou, M. Saadoun, and L. El Mir, “Optical characterization of SiO2/Zn2SiO4:V nanocomposite obtained after the incorporation of ZnO:V nanoparticles in silica host matrix,” J. Phys. Chem. Solids 71(3), 194–198 (2010).
[CrossRef]

Sakurai, T.

M. Morita, S. Kajiyama, T. Kai, D. Rau, and T. Sakurai, “Physicochemical control of valence in luminescence of Cr(III) and V (III, IV) complexes embedded in xero-gel and sol-gel SiO2 glasses,” J. Lumin. 94–95, 91–95 (2001).
[CrossRef]

Shareefuddin, M.

M. Shareefuddin, M. Jamal, G. Ramadevudu, M. Lakshmipati Rao, and M. N. Chary, “Electron paramagnetic resonance spectra of VO2+ ions in NaI-Na2O-K2O-B2O3 mixed alkali glasses,” J. Non-Cryst. Solids 255(2-3), 228–232 (1999).
[CrossRef]

Shirai, M.

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

Sillén, L. G.

C. K. Jørgensen, S. Döger, M. Frydman, and L. G. Sillén, “Comparative ligand field studies IV. vandium (IV), titanium (III) and other systems with one d-electron,” Acta Chem. Scand. 11, 73–85 (1957).
[CrossRef]

Srikumar, T.

T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, and N. Veeraiah, “Microstructure, dielectric and spectroscopic properties of Li2O-Nb2O5-ZrO2-SiO2 glass system crystallized with V2O5,” J. Phys. Chem. Solids 72(3), 190–200 (2011), doi:.
[CrossRef]

Srinvasa Rao, C.

T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, and N. Veeraiah, “Microstructure, dielectric and spectroscopic properties of Li2O-Nb2O5-ZrO2-SiO2 glass system crystallized with V2O5,” J. Phys. Chem. Solids 72(3), 190–200 (2011), doi:.
[CrossRef]

Tanahashi, I.

M. Anpo, I. Tanahashi, and Y. Kubokawa, “Photoluminescence and photoreduction of V2O5 supported on porous vycor glass,” J. Phys. Chem. 84(25), 3440–3443 (1980).
[CrossRef]

Tanaka, K.

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

Tanno, F.

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

Teng, Y.

Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Veeraiah, N.

T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, and N. Veeraiah, “Microstructure, dielectric and spectroscopic properties of Li2O-Nb2O5-ZrO2-SiO2 glass system crystallized with V2O5,” J. Phys. Chem. Solids 72(3), 190–200 (2011), doi:.
[CrossRef]

Venkatramaiah, N.

T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, and N. Veeraiah, “Microstructure, dielectric and spectroscopic properties of Li2O-Nb2O5-ZrO2-SiO2 glass system crystallized with V2O5,” J. Phys. Chem. Solids 72(3), 190–200 (2011), doi:.
[CrossRef]

Wang, J.

areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:.
[CrossRef]

West, A. R.

A. R. West and F. P. Glasser, “Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds,” J. Solid State Chem. 4(1), 20–28 (1972).
[CrossRef]

Wondraczek, L.

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramics phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:.
[CrossRef]

G. Gao, N. Da, S. Reibstein, and L. Wondraczek, “Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics,” Opt. Express 18(S4Suppl 4), A575–A583 (2010).
[CrossRef] [PubMed]

N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+, Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010).
[CrossRef] [PubMed]

Wu, E.

Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Xiao, Z. H.

A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, and X. Y. Li, “Effect of heat-treatmentcondition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO-Al2O3–SiO2–P2O5 glass–ceramics,” J. Non-Cryst. Solids 353(28), 2692–2697 (2007).
[CrossRef]

Xing, R.

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[CrossRef]

Ye, S.

areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:.
[CrossRef]

Yoshida, S.

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

Yu, D. C.

areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:.
[CrossRef]

Zeng, H.

Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Zhang, Q. Y.

areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:.
[CrossRef]

Zhang, X. F.

A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, and X. Y. Li, “Effect of heat-treatmentcondition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO-Al2O3–SiO2–P2O5 glass–ceramics,” J. Non-Cryst. Solids 353(28), 2692–2697 (2007).
[CrossRef]

Zhu, B.

Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Zhuang, Y.

Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Acta Chem. Scand. (1)

C. K. Jørgensen, S. Döger, M. Frydman, and L. G. Sillén, “Comparative ligand field studies IV. vandium (IV), titanium (III) and other systems with one d-electron,” Acta Chem. Scand. 11, 73–85 (1957).
[CrossRef]

Adv. Mater. Res. (1)

Z. B. Kea, A. X. Lub, and G. F. Huang, “Effect of K2O addition on crystallization and microstructure of Li2O-ZnO-Al2O3-SiO2 system glass-ceramics,” Adv. Mater. Res. 11-12, 205–208 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Chi, E. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett. 95(11), 111913 (2009).
[CrossRef]

Geochim. Cosmochim. Acta (1)

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[CrossRef]

Inorg. Chem. (1)

C. J. Ballhausen and H. B. Gray, “The electronic structure of the vanadyl ion,” Inorg. Chem. 1(1), 111–122 (1962).
[CrossRef]

J. Alloy. Comp. (1)

H. Farah, “An EPR characterization of vanadium in CaO and Na2O based Al2O3-SiO2 glasses,” J. Alloy. Comp. 453(1-2), 288–291 (2008).
[CrossRef]

J. Am. Ceram. Soc. (1)

W. D. Johnston, “Optical spectra of the various valence states of vanadium in Na2O·2SiO2 glass,” J. Am. Ceram. Soc. 48(12), 608–611 (1965).
[CrossRef]

J. Lumin. (3)

Y. Fujimoto, F. Tanno, K. Izumi, S. Yoshida, S. Miyazaki, M. Shirai, K. Tanaka, Y. Kawabe, and E. Hanamura, “Vanadium-doped MgAl2O4 crystals as white light source,” J. Lumin. 128(3), 282–286 (2008).
[CrossRef]

M. Morita, S. Kajiyama, T. Kai, D. Rau, and T. Sakurai, “Physicochemical control of valence in luminescence of Cr(III) and V (III, IV) complexes embedded in xero-gel and sol-gel SiO2 glasses,” J. Lumin. 94–95, 91–95 (2001).
[CrossRef]

C. Hsu and R. C. Powell, “Energy transfer in europium doped yttrium vanadate crystals,” J. Lumin. 10(5), 273–293 (1975).
[CrossRef]

J. Mater. Chem. (1)

G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramics phosphors,” J. Mater. Chem. 21(9), 3156–3161 (2011).
[CrossRef]

J. Non-Cryst. Solids (3)

A. X. Lu, Z. B. Ke, Z. H. Xiao, X. F. Zhang, and X. Y. Li, “Effect of heat-treatmentcondition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO-Al2O3–SiO2–P2O5 glass–ceramics,” J. Non-Cryst. Solids 353(28), 2692–2697 (2007).
[CrossRef]

M. Shareefuddin, M. Jamal, G. Ramadevudu, M. Lakshmipati Rao, and M. N. Chary, “Electron paramagnetic resonance spectra of VO2+ ions in NaI-Na2O-K2O-B2O3 mixed alkali glasses,” J. Non-Cryst. Solids 255(2-3), 228–232 (1999).
[CrossRef]

L. D. Bogomolova, A. N. Khabarova, E. V. Klimashina, N. A. Krasil'nikova, and V. A. Jachkin, “EPR of V4+ ions in silica glass, 20,” J. Non-Cryst. Solids 103(2-3), 319–324 (1988).
[CrossRef]

J. Phys. Chem. (1)

M. Anpo, I. Tanahashi, and Y. Kubokawa, “Photoluminescence and photoreduction of V2O5 supported on porous vycor glass,” J. Phys. Chem. 84(25), 3440–3443 (1980).
[CrossRef]

J. Phys. Chem. B (2)

S. Dzwigaj, M. Matsuoka, M. Anpo, and M. Che, “Evidence of three kinds of tetrahedral vanadium (V) species in VSiß zeolite by diffuse reflectance UV-Visible and photoluminescence spectroscopies,” J. Phys. Chem. B 104(25), 6012–6020 (2000).
[CrossRef]

S. Dzwigaj, J. Krafft, M. Che, S. Lim, and G. L. Haller, “Photoluminescence study of the introduction of V in Si-MSM-41: role of surface defects and their associated SiO- and SiOH groups,” J. Phys. Chem. B 107(16), 3856–3861 (2003).
[CrossRef]

J. Phys. Chem. C (1)

Z. Cheng, R. Xing, Z. Hou, S. Huang, and J. Lin, “Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing,” J. Phys. Chem. C 114(21), 9883–9888 (2010).
[CrossRef]

J. Phys. Chem. Solids (2)

J. El Ghoul, C. Barthou, M. Saadoun, and L. El Mir, “Optical characterization of SiO2/Zn2SiO4:V nanocomposite obtained after the incorporation of ZnO:V nanoparticles in silica host matrix,” J. Phys. Chem. Solids 71(3), 194–198 (2010).
[CrossRef]

T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, and N. Veeraiah, “Microstructure, dielectric and spectroscopic properties of Li2O-Nb2O5-ZrO2-SiO2 glass system crystallized with V2O5,” J. Phys. Chem. Solids 72(3), 190–200 (2011), doi:.
[CrossRef]

J. Solid State Chem. (1)

A. R. West and F. P. Glasser, “Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds,” J. Solid State Chem. 4(1), 20–28 (1972).
[CrossRef]

Opt. Express (2)

Sol. Eng. Mat. Sol. Cell (1)

areD. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo response of solar cells,” Sol. Eng. Mat. Sol. Cell (2011), doi:.
[CrossRef]

Other (2)

W. Höland and G. H. Beall, Glass Ceramic Technology (American Ceramic Society, 2002).

H. Bach, F. G. K. Baucke, and D. Krause, Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes (Springer-Verlag, 2001). p. 293.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

UV-NIR absorption spectra (A) and EPR spectra (B) of SLZAKP for different nominal dopant concentration, expressed as V2O5.

Fig. 2
Fig. 2

XPS spectra of as-melted SLZAKP with different nominal vanadium concentration (labels). The inset depicts a zoom at the V2p3/2 signal.

Fig. 3
Fig. 3

Static photoluminescence (A) and luminescence lifetime (B) of SLZAKP for different nominal vanadium concentration (labels). The inset of (B) shows the decay kinetics of an as-melted specimen and a crystallized sample (both doped with 0.1 mol% V2O5).

Fig. 4
Fig. 4

(A): Ex situ XRD patterns of as-melted SLZAKP and samples which were annealed for 2 h at different temperatures ([V2O5] = 0.1 mol%).The labels indicate the calculated crystal volume fraction. (B): Photoexcitation (right) and emission (left) spectra of crystallized SLZAKP for various annealing temperatures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = i X i × Λ i
log V 4 + V 5 + = 4 8 Λ

Metrics