Abstract

We have characterized antireflection (AR) moth-eye films placed on top of crystalline silicon photovoltaic (PV) modules by indoor and outdoor experiments and examined improvements in conversion efficiency. The effects of the ratio of diffuse solar irradiation to total solar irradiation (diffusion index) and incident angle on efficiency have been quantitatively analyzed. Using computer simulations, yearly efficiency improvements under different installation conditions have been projected. We have shown that the use of AR moth-eye films offers the best advantages. Further, vertical tilt angle installation leads to the highest efficiency improvement, whereas spectral matching with the PV modules influences the efficiency improvement.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, D. Inns, K. Fogel, and D. K. Sadana, “Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask,” Sol. Energy Mater. Sol. Cells 94(12), 2091–2093 (2010).
    [CrossRef]
  2. D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells (2010), doi:.
  3. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
    [CrossRef]
  4. S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated, planar silicon solar cells,” Prog. Photo. 17(4), 241–252 (2009).
    [CrossRef]
  5. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
    [CrossRef] [PubMed]
  6. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photo. 15(5), 415–423 (2007).
    [CrossRef]
  7. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photo. 18(3), 195–203 (2010).
    [CrossRef]
  8. S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 7410J (2009).
  9. C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
    [CrossRef]
  10. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).
  11. P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the moth-eye principle,” Nature 244(5414), 281–282 (1973).
    [CrossRef]
  12. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B-Biol,” Science 273, 661–667 (2006).
  13. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
    [CrossRef]
  14. A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-moth-eye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
    [CrossRef]
  15. S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010).
    [CrossRef] [PubMed]
  16. T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, and H. Masuda, “Antireflection polymer surface using anodic porous alumina molds with tapered holes,” Chem. Lett. 36(4), 530–531 (2007).
    [CrossRef]
  17. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
    [CrossRef]
  18. N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photo. 18, 195–203 (2010).
  19. H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” Twenty-Sixth IEEE Photovol. Spec. Conf., 471–474 (1997).
  20. E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting,” Sol. Energy Mater. Sol. Cells 92(11), 1393–1402 (2008).
    [CrossRef]
  21. C. Honsberg, and S. Bowden, “PVCDROM, Appendices: Standard Solar Spectra,” http://www.pveducation.org/pvcdrom/appendicies/standard-solar-spectra .
  22. H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).
  23. W. Marion, and K. Urban, “National Solar Radiation Data Base,” http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/tmy2/ .

2010 (6)

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photo. 18(3), 195–203 (2010).
[CrossRef]

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010).
[CrossRef] [PubMed]

J. Kim, D. Inns, K. Fogel, and D. K. Sadana, “Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask,” Sol. Energy Mater. Sol. Cells 94(12), 2091–2093 (2010).
[CrossRef]

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells (2010), doi:.

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
[CrossRef]

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photo. 18, 195–203 (2010).

2009 (3)

S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated, planar silicon solar cells,” Prog. Photo. 17(4), 241–252 (2009).
[CrossRef]

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 7410J (2009).

2008 (3)

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting,” Sol. Energy Mater. Sol. Cells 92(11), 1393–1402 (2008).
[CrossRef]

2007 (2)

T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, and H. Masuda, “Antireflection polymer surface using anodic porous alumina molds with tapered holes,” Chem. Lett. 36(4), 530–531 (2007).
[CrossRef]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photo. 15(5), 415–423 (2007).
[CrossRef]

2006 (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B-Biol,” Science 273, 661–667 (2006).

2005 (1)

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-moth-eye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[CrossRef]

2000 (1)

H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).

1999 (1)

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the moth-eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

Abbott, S.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Akasaka, H.

H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).

Allsopp, D. W. E.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Arafune, K.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photo. 15(5), 415–423 (2007).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B-Biol,” Science 273, 661–667 (2006).

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photo. 18(3), 195–203 (2010).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 7410J (2009).

S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated, planar silicon solar cells,” Prog. Photo. 17(4), 241–252 (2009).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

Bläsi, B.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photo. 18(3), 195–203 (2010).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated, planar silicon solar cells,” Prog. Photo. 17(4), 241–252 (2009).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 7410J (2009).

Boudouvis, A. G.

E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting,” Sol. Energy Mater. Sol. Cells 92(11), 1393–1402 (2008).
[CrossRef]

Chen, Q.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Chhajed, S.

Choi, S. J.

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010).
[CrossRef] [PubMed]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the moth-eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Döll, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Dreibholz, J.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Emura, E.

H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).

Emura, K.

H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).

Fogel, K.

J. Kim, D. Inns, K. Fogel, and D. K. Sadana, “Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask,” Sol. Energy Mater. Sol. Cells 94(12), 2091–2093 (2010).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B-Biol,” Science 273, 661–667 (2006).

Glaubitt, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Gombert, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Gupta, M. C.

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
[CrossRef]

Heinzel, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Hideyo, N.

H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).

Hubbard, G.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Huh, S. Y.

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010).
[CrossRef] [PubMed]

Husain, M.

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells (2010), doi:.

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the moth-eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Inns, D.

J. Kim, D. Inns, K. Fogel, and D. K. Sadana, “Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask,” Sol. Energy Mater. Sol. Cells 94(12), 2091–2093 (2010).
[CrossRef]

Iyengar, V. V.

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
[CrossRef]

Jiang, B.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Jiang, P.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Kaiser, N.

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-moth-eye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[CrossRef]

Kaless, A.

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-moth-eye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photo. 15(5), 415–423 (2007).
[CrossRef]

Kawamoto, Y.

T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, and H. Masuda, “Antireflection polymer surface using anodic porous alumina molds with tapered holes,” Chem. Lett. 36(4), 530–531 (2007).
[CrossRef]

Kim, J.

J. Kim, D. Inns, K. Fogel, and D. K. Sadana, “Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask,” Sol. Energy Mater. Sol. Cells 94(12), 2091–2093 (2010).
[CrossRef]

Kim, J. K.

Kim, O. N.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photo. 18, 195–203 (2010).

Kondo, T.

T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, and H. Masuda, “Antireflection polymer surface using anodic porous alumina molds with tapered holes,” Chem. Lett. 36(4), 530–531 (2007).
[CrossRef]

Kumar, D.

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells (2010), doi:.

Kumar, V.

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells (2010), doi:.

Liu, C.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Masuda, H.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photo. 18, 195–203 (2010).

T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, and H. Masuda, “Antireflection polymer surface using anodic porous alumina molds with tapered holes,” Chem. Lett. 36(4), 530–531 (2007).
[CrossRef]

Matsumoto, S.

H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).

Miki, N.

H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).

Mont, F. W.

Munzert, P.

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-moth-eye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[CrossRef]

Nakai, Y.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photo. 18, 195–203 (2010).

Nayak, B. K.

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
[CrossRef]

Nishio, K.

T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, and H. Masuda, “Antireflection polymer surface using anodic porous alumina molds with tapered holes,” Chem. Lett. 36(4), 530–531 (2007).
[CrossRef]

Ohshita, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photo. 15(5), 415–423 (2007).
[CrossRef]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B-Biol,” Science 273, 661–667 (2006).

Palyvos, J. A.

E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting,” Sol. Energy Mater. Sol. Cells 92(11), 1393–1402 (2008).
[CrossRef]

Poxson, D. J.

Rose, K.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Sadana, D. K.

J. Kim, D. Inns, K. Fogel, and D. K. Sadana, “Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask,” Sol. Energy Mater. Sol. Cells 94(12), 2091–2093 (2010).
[CrossRef]

Sai, H.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photo. 15(5), 415–423 (2007).
[CrossRef]

Schubert, E. F.

Schubert, M. F.

Schulz, U.

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-moth-eye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[CrossRef]

Shields, P. A.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Singh, P. K.

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells (2010), doi:.

Skoplaki, E.

E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting,” Sol. Energy Mater. Sol. Cells 92(11), 1393–1402 (2008).
[CrossRef]

Soga, K.

H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).

Sporn, D.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Srivastava, S. K.

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells (2010), doi:.

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B-Biol,” Science 273, 661–667 (2006).

Sun, C.-H.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Takemasa, K.

H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).

Tokimitsu, T.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photo. 18, 195–203 (2010).

Wang, W. N.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Wittwer, V.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Yamada, N.

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photo. 18, 195–203 (2010).

Yamaguchi, M.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photo. 15(5), 415–423 (2007).
[CrossRef]

Yanagishita, T.

T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, and H. Masuda, “Antireflection polymer surface using anodic porous alumina molds with tapered holes,” Chem. Lett. 36(4), 530–531 (2007).
[CrossRef]

Yasui, K.

T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, and H. Masuda, “Antireflection polymer surface using anodic porous alumina molds with tapered holes,” Chem. Lett. 36(4), 530–531 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[CrossRef]

Chem. Lett. (1)

T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, and H. Masuda, “Antireflection polymer surface using anodic porous alumina molds with tapered holes,” Chem. Lett. 36(4), 530–531 (2007).
[CrossRef]

Endeavor (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

Macromol. Rapid Commun. (1)

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010).
[CrossRef] [PubMed]

Nature (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflection by the moth-eye principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE 7401, 7410J (2009).

Prog. Photo. (4)

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photo. 15(5), 415–423 (2007).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photo. 18(3), 195–203 (2010).
[CrossRef]

N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photo. 18, 195–203 (2010).

S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated, planar silicon solar cells,” Prog. Photo. 17(4), 241–252 (2009).
[CrossRef]

Science (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B-Biol,” Science 273, 661–667 (2006).

Sol. Energy Mater. Sol. Cells (4)

E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting,” Sol. Energy Mater. Sol. Cells 92(11), 1393–1402 (2008).
[CrossRef]

J. Kim, D. Inns, K. Fogel, and D. K. Sadana, “Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask,” Sol. Energy Mater. Sol. Cells 94(12), 2091–2093 (2010).
[CrossRef]

D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells (2010), doi:.

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells 94(12), 2251–2257 (2010).
[CrossRef]

Surf. Coat. Tech. (1)

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-moth-eye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Tech. 200(1-4), 58–61 (2005).
[CrossRef]

Symposia (1)

H. Akasaka, N. Hideyo, K. Soga, S. Matsumoto, K. Emura, N. Miki, E. Emura, and K. Takemasa, “Development of Expanded AMeDAS weather data for building calculation in Japan,” ASHRAE Transactions,” Symposia 106, 455–465 (2000).

Thin Solid Films (1)

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Other (3)

W. Marion, and K. Urban, “National Solar Radiation Data Base,” http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/tmy2/ .

C. Honsberg, and S. Bowden, “PVCDROM, Appendices: Standard Solar Spectra,” http://www.pveducation.org/pvcdrom/appendicies/standard-solar-spectra .

H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” Twenty-Sixth IEEE Photovol. Spec. Conf., 471–474 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Moth-eye structure made of acrylic resin. (a) Fabricated moth-eye structure observed using scanning electron microscopy (SEM). (b) Fabricated rolls of moth-eye film; the rolls appear green due to the color of the protection film.

Fig. 2
Fig. 2

Spectral reflectance of moth-eye antireflection (AR) film and the conventional multilayered AR film. Solid line: moth-eye AR; Dashed line: conventional AR; red: θ in = 5°; blue: θ in = 30°; green: θ in = 60°.

Fig. 3
Fig. 3

Photos and cross-sectional schematics of the tested c-Si PV modules (a) with moth-eye film; (b) without moth-eye; (c) upper: with moth-eye; lower: without moth-eye.

Fig. 4
Fig. 4

Indoor experiment using 1.2 m × 1.2 m solar simulator that meets Class-C ASTM / IEC / JIS standards; (a) solar simulator; the temperature inside the room was controlled to be 25 °C; (b) comparison of conversion efficiency of c-Si PV modules with and without moth-eye film. The average efficiencies of the same modules in outdoor experiments are also shown for comparison.

Fig. 5
Fig. 5

Apparatus of outdoor experiment system. (a) Schematic diagram of the system. (b) Photo of the system. Tilt angle of PV modules is 40°, facing southward.

Fig. 6
Fig. 6

Results of outdoor experiment. (a) Daily variations in conversion efficiency of the modules with and without moth-eye film on May 21, 2010. (b) Histogram of efficiency improvement Χ for 8-day experiment. Vertical axis represents measurement hour with respect to X value.

Fig. 7
Fig. 7

Relationship among efficiency improvement X, incident angle, and diffusion index range. (a) Overall relationship; points: experiment; lines: guide line for the calculated points; Each experiment and calculation point is mean value over a range of incident angle and diffusion index; Color legend indicates that each point and line corresponds to a range of incident angle. (b) Spectral breakdown of the relationship for the moth-eye film.

Fig. 8
Fig. 8

Estimated monthly efficiency X of PV module with moth-eye film. (a) Monthly average of diffusion index; Tilt angle of the module: (b) 0°, (c) 30°, (d) 60°, (e) 90°.

Tables (1)

Tables Icon

Table 1 Estimated Yearly Efficiency Improvement X of the PV Module Using the Moth-eye Film.

Metrics