Abstract

Using strong couplings of different Fabry–Perot (FP) resonators in metal–insulator–metal waveguides, a compact plasmonic wavelength demultiplexer is numerically demonstrated with high wavelength resolution. In the demultiplexer, it is found that new right–angle resonators emerge with bandwidth narrower than that of the isolated FP resonators. These narrowband right–angle resonators interfere with the broadband FP resonators, resulting in Fano–line shapes in the transmission spectra. Consequently, these sharp and asymmetric Fano–line shapes considerably increase the resolution of wavelength demultiplexing, which is significantly narrower than the full width of the isolated FP resonator.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer–Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [CrossRef]
  4. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
    [CrossRef]
  5. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  7. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon–polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
    [CrossRef]
  8. G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [CrossRef]
  9. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
    [CrossRef]
  10. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
    [CrossRef]
  11. E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
    [CrossRef] [PubMed]
  12. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
    [CrossRef] [PubMed]
  13. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-26-24096 .
    [CrossRef]
  14. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [CrossRef] [PubMed]
  15. A. A. Reiserer, J. S. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18(11), 11810–11820 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11810 .
    [CrossRef] [PubMed]
  16. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
    [CrossRef]
  17. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal–dielectric–metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11111 .
    [CrossRef] [PubMed]
  18. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [CrossRef]
  19. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
    [CrossRef] [PubMed]
  20. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908 (2002).
    [CrossRef]

2010 (5)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal–dielectric–metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11111 .
[CrossRef] [PubMed]

A. A. Reiserer, J. S. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18(11), 11810–11820 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11810 .
[CrossRef] [PubMed]

2009 (3)

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-26-24096 .
[CrossRef]

2008 (4)

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[CrossRef] [PubMed]

X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
[CrossRef] [PubMed]

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
[CrossRef]

2007 (1)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon–polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

2006 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

2005 (1)

G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908 (2002).
[CrossRef]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Akjouj, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Atwater, H. A.

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[CrossRef] [PubMed]

Bachelier, G.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Benichou, E.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[CrossRef] [PubMed]

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon–polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Brevet, P.-F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[CrossRef] [PubMed]

Brixner, T.

Brunets, I.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

Davoyan, A. R.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

Del Fatti, N.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Dionne, J. A.

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[CrossRef] [PubMed]

Djafari-Rouhani, B.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908 (2002).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
[CrossRef]

Gillet, J.-N.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Gramotnev, D. K.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Hecht, B.

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon–polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

Huang, J. S.

Huang, X. G.

Jonin, C.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

Kuipers, L. K.

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[CrossRef] [PubMed]

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lin, X. S.

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

Noual, A.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Pennec, Y.

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Polman, A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[CrossRef] [PubMed]

Reiserer, A. A.

Russier-Antoine, I.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[CrossRef] [PubMed]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Schmitz, J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

Shadrivov, I. V.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

Tao, J.

Vallée, F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[CrossRef] [PubMed]

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

van Loon, R. V. A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

Verhagen, E.

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[CrossRef] [PubMed]

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Walters, R. J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

Wang, H. Z.

Wang, T. B.

Wen, X. W.

Yin, C. P.

Zharov, A. A.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

Zhu, J. H.

Appl. Phys. Lett. (2)

G. Veronis and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908 (2002).
[CrossRef]

N. J. Phys. (1)

A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Nano Lett. (1)

E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8(9), 2925–2929 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

Nat. Photonics (2)

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (1)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon–polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallée, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101(19), 197401 (2008).
[CrossRef] [PubMed]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer–Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematics of the isolated FP resonator in the MIM waveguide with a baffle and the geometrical parameter symbols. The positions of the ports a, b, and 1 are fixed, with L = 1.0 μm.

Fig. 2
Fig. 2

(a) Dependence of the transmittances, T 1 and T b, on the baffle position for different baffle thicknesses: t = 0 nm (without baffles), t = 10 nm, t = 15 nm, and t = 20 nm. (b) and (c) Distributions of the SPP power flow in the air for d = 150 nm and d = 350 nm, respectively.

Fig. 3
Fig. 3

Transmission spectra, T 1 and T b, for different baffle positions (d = 480 nm, d = 500 nm, and d = 520 nm).

Fig. 4
Fig. 4

Structure of a 1 × 2 plasmonic wavelength demultiplexer.

Fig. 5
Fig. 5

Dependence of the transmittances of each channel (T 1, T 2, and T b) on the separation of the two channels, w, in the 1 × 2 demultiplexer for λ = 985 nm.

Fig. 6
Fig. 6

Transmittance of channel 1 without the baffle in channel 1 for different separations between channel 1 and 2. The inset illustrates the simulation structure.

Fig. 7
Fig. 7

(a) Dependence of the transmittances, T 1, T 2, and T b, on the incident wavelength in the 1 × 2 demultiplexer. (b) Transmittance of channel 1 without the baffle in channel 1 (dash line) and transmittances of the isolated FP resonator with d = 480 nm and d = 500 nm.

Fig. 8
Fig. 8

Dependence of the transmittances, T 1, T 2, and T b, on the incident wavelength in the 1 × 2 demultiplexer. d 1 = 485 nm, d 2 = 500 nm, and w = 360 nm.

Fig. 9
Fig. 9

(a) Transmission spectra (T 1, T 2, T 3, and T b) in the 1 × 3 demultiplexer. Distributions of the SPP power flow in the air in the demultiplexer at different incident wavelengths (b) λ = 950 nm, (c) λ = 980 nm, and (d) λ = 1020 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ F P = 2 k s p p d + θ ,

Metrics