Abstract

We present a computational and experimental study of a novel terahertz (THz) device resulting from hybridization of metamaterials with pseudomorphic high electron mobility transistors (HEMTs), fabricated in a commercial gallium arsenide (GaAs) process. Monolithic integration of transistors into each unit cell permits modulation at the metamaterial resonant frequency of 0.46 THz. Characterization is performed using a THz time-domain spectrometer (THz-TDS) and we demonstrate switching values over 30%, and THz modulation at frequencies up to 10 megahertz (MHz). Our results demonstrate the viability of incorporating metamaterials into mature semiconductor technologies and establish a new path toward achieving electrically tunable THz devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
  2. D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [PubMed]
  6. W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
  7. H. -T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt , “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [PubMed]
  8. H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
  9. I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).
  10. D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91, 164101 (2007).
  11. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
  12. H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
  13. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819–827 (2009).
    [PubMed]
  14. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
  15. L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393–395 (2008).
    [PubMed]
  16. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
  17. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).
  18. W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).
  19. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).
  20. M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
    [PubMed]
  21. M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Dev. 43, 380–387 (1996).
  22. V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 1875–1881 (2002).
  23. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).
  24. T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microwave Wireless Comp. Lett. 14, 77–79 (2003).
  25. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).
  26. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
  27. P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).
  28. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
  29. S. J. Allen, D. C. Tsui, and F. DeRosa, “Frequency dependence of the electron conductivity in the silicon inversion layer in the metallic and localized regimes,” Phys. Rev. Lett. 35, 1359–1362 (1975).
  30. E. Batke and D. Heitmann, “Rapid-Scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).
  31. R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

2009 (4)

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819–827 (2009).
[PubMed]

2008 (4)

L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393–395 (2008).
[PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).

2007 (2)

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91, 164101 (2007).

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).

2006 (3)

H. -T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt , “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).

2004 (3)

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).

I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).

2003 (2)

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microwave Wireless Comp. Lett. 14, 77–79 (2003).

2002 (2)

V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 1875–1881 (2002).

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[PubMed]

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[PubMed]

1998 (1)

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

1996 (1)

M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Dev. 43, 380–387 (1996).

1993 (2)

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[PubMed]

R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

1989 (1)

P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).

1984 (1)

E. Batke and D. Heitmann, “Rapid-Scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).

1975 (1)

S. J. Allen, D. C. Tsui, and F. DeRosa, “Frequency dependence of the electron conductivity in the silicon inversion layer in the metallic and localized regimes,” Phys. Rev. Lett. 35, 1359–1362 (1975).

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).

Allen, S. J.

S. J. Allen, D. C. Tsui, and F. DeRosa, “Frequency dependence of the electron conductivity in the silicon inversion layer in the metallic and localized regimes,” Phys. Rev. Lett. 35, 1359–1362 (1975).

Amine, H.

R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).

H. -T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt , “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).

Ballingall, J. M.

P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).

Basov, D. N.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Batke, E.

E. Batke and D. Heitmann, “Rapid-Scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).

Beigang, R.

Bingham, C. M.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

Bollaert, S.

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).

Bonache, J.

I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).

Brehm, M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Brener, I.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

Cai, Y.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

Cappy, A.

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).

Chae, Byung-Gyu

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Chan, W. L.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).

Chao, P.-C.

P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).

Chen, C.-Y.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microwave Wireless Comp. Lett. 14, 77–79 (2003).

Chen, H.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91, 164101 (2007).

Chen, H. -T.

H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).

H. -T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt , “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

Cho, S. Y.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[PubMed]

Dawson, P.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).

Deng, Y.

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).

DeRosa, F.

S. J. Allen, D. C. Tsui, and F. DeRosa, “Frequency dependence of the electron conductivity in the silicon inversion layer in the metallic and localized regimes,” Phys. Rev. Lett. 35, 1359–1362 (1975).

Driscoll, T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Duh, K. H. G.

P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).

Dyakonov, M.

M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Dev. 43, 380–387 (1996).

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[PubMed]

Escotte, L.

R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

Federici, J.

Federici, J. F.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

Forchel, A.

Garcia-Garcia, J.

I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).

Gayral, M.

R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

Gil, I.

I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).

Giles, R. C.

Gossard, A. C.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

H. -T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt , “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[PubMed]

Graffeuil, J.

R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

Hein, G.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).

Heinrich, J.

Heitmann, D.

E. Batke and D. Heitmann, “Rapid-Scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).

Ho, P.

P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).

Höfling, S.

Imhof, C.

Jabra, A.

P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).

Jokerst, N. M.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[PubMed]

Keilmann, F.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Khmyrova, I.

V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 1875–1881 (2002).

Kim, Hyun-Tak

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Kleine-Ostmann, T.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).

Knap, W.

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).

Koch, M.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).

Kong, J. A.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91, 164101 (2007).

Lägel, B.

Lee, Mark

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).

Lim, H. C.

Llopis, O.

R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

Lopata, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

Lusakowski, J.

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).

Marie Jokerst, N.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Marques, R.

I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).

Marso, M.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).

Martin, F.

I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).

Mittleman, D. M.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).

Möller, L.

Mu, M.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91, 164101 (2007).

Nemat-Nasser, S. C.

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[PubMed]

O’Hara, J. F.

H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).

H. -T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt , “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[PubMed]

Padilla, Willie J.

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[PubMed]

Palit, S.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Pan, C.-L.

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microwave Wireless Comp. Lett. 14, 77–79 (2003).

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).

Pan, R.-P.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microwave Wireless Comp. Lett. 14, 77–79 (2003).

Parenty, T.

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).

Parra, T.

R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

Paul, O.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[PubMed]

Pfeiffer, L.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

Pierz, K.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).

Plana, R.

R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

Popov, V. V.

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).

Qazilbash, M. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Rahm, M.

Ran, L.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91, 164101 (2007).

Rumyantsev, S.

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).

Ryzhii, V.

V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 1875–1881 (2002).

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[PubMed]

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[PubMed]

Shrekenhamer, D. B.

H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).

Shur, M.

V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 1875–1881 (2002).

M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Dev. 43, 380–387 (1996).

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[PubMed]

Shur, M. S.

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).

P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).

Sinyukov, A.

Smith, D. R.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[PubMed]

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[PubMed]

Smith, P. M.

P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).

Sorolla, M.

I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).

Stark, J. B.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[PubMed]

Taylor, A. J.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).

H. -T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt , “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[PubMed]

Tiberio, R. C.

P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).

Tsai, T.-R.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microwave Wireless Comp. Lett. 14, 77–79 (2003).

Tsui, D. C.

S. J. Allen, D. C. Tsui, and F. DeRosa, “Frequency dependence of the electron conductivity in the silicon inversion layer in the metallic and localized regimes,” Phys. Rev. Lett. 35, 1359–1362 (1975).

Tyler, T.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).

Vier, D. C.

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[PubMed]

Wang, D.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91, 164101 (2007).

Wolff, S.

Wu, B.-I.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91, 164101 (2007).

Wu, Q.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

Wynn, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

Xie, C.

Yun, Sun-Jin

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

Zengerle, R.

Zhang, X. C.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

Zhang, X.-C.

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microwave Wireless Comp. Lett. 14, 77–79 (2003).

Zide, J. M. O.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

H. -T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt , “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[PubMed]

Appl. Phys. Lett. (10)

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).

T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91, 164101 (2007).

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).

Electron. Lett. (1)

I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, “Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies,” Electron. Lett. 40, 1347–1348 (2004).

IEEE Microwave Wireless Comp. Lett. (1)

T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microwave Wireless Comp. Lett. 14, 77–79 (2003).

IEEE Trans. Electron Dev. (3)

M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron Dev. 43, 380–387 (1996).

P.-C. Chao, M. S. Shur, R. C. Tiberio, K. H. G. Duh, P. M. Smith, J. M. Ballingall, P. Ho, and A. Jabra, “DC and microwave characteristics of sub-0.1- μm gate-length planar-doped pseudomorphic HEMTs,” IEEE Trans. Electron Dev. 36, 461–473 (1989).

R. Plana, L. Escotte, O. Llopis, H. Amine, T. Parra, M. Gayral, and J. Graffeuil, “Noise in AlGaAs/InGaAs/GaAs pseudomorphic HEMTs from 10 Hz to 18 GHz,” IEEE Trans. Electron Dev. 40, 852–858 (1993).

Infrared Phys. (1)

E. Batke and D. Heitmann, “Rapid-Scan fourier transform spectroscopy of 2-D space charge layers in semiconductors,” Infrared Phys. 24, 189–197 (1984).

J. Appl. Phys. (2)

V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 1875–1881 (2002).

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, “Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators,” J. Appl. Phys. 105, 093707 (2009).

Nat. Photonics (2)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).

H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).

Nature (1)

H. -T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt , “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).

Phys. Rev. Lett. (4)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[PubMed]

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[PubMed]

D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[PubMed]

S. J. Allen, D. C. Tsui, and F. DeRosa, “Frequency dependence of the electron conductivity in the silicon inversion layer in the metallic and localized regimes,” Phys. Rev. Lett. 35, 1359–1362 (1975).

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Design and structure detail of the HEMT based electronically controlled THz meta-material modulator. (a) Single unit cell of the metamaterial element, as modeled for simulation. The HEMT is identified and lies under each split gap of the metamaterial. (b) Schematic depicting the entire HEMT / metamaterial device, and the polarization orientation of the incident THz wave is shown. (c) Cross-sectional view of the HEMT / metamaterial device in proximity to the split gap. (d) Band diagram detailing the 2DEG layer in the undoped InGaAs at the interface with the Schottky layer.

Fig. 2
Fig. 2

The simulated I-V characteristics of the HEMT. (a) Drain-to-source current (IDS ) as a function of gate-to-source (VGS ) voltage. (b) Drain-to-source current (IDS ) as a function of drain-to-source electric field (EDS ), operating in the linear region.

Fig. 3
Fig. 3

(a) Frequency dependent transmitted electric field for the HEMT / metamaterial device as a function of bias. (b) Voltage dependence of the differential transmission as defined in the text.

Fig. 4
Fig. 4

(a) Simulated differential transmission for various 2D carrier concentrations N s . (b) A comparison of simulated (red) and experimental (black) differential transmission.

Fig. 5
Fig. 5

(a) Time domain data for modulation at frequencies of 100 kHz, 1 MHz and 10 MHz. (b) Spectra calculated from the time domain data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω ) = σ 0 1 i ω τ ,
σ r = σ 0 / ( 1 + ω 2 τ 2 ) , σ i = σ 0 ω τ / ( 1 + ω 2 τ 2 )
ɛ ( ω ) = ɛ + i ω p 2 γ ω 1 ω 2 + γ 2 ,
V out ( t ) = α | E t 0 ( t ) E t 1 ( t ) |

Metrics