Abstract

The concept of an integrated nanoplasmonic sensor implemented on a silicon substrate is presented. Developed experimental setup based on rotation of linearly polarized light provides intensity detection between two orthogonal polarizations of a He-Ne laser beam. This optical configuration yields to a sensitivity improvement and noise reduction, resulting in a resolution of 4x10−5 Refractive Index Units. Proposed methodology is promising for the application in portable nanoplasmonic multisensing and imaging.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag Tracts Mod. Phys. 111 (Springer-Verlag, 1988)
  2. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
    [CrossRef] [PubMed]
  3. Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
    [CrossRef]
  4. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
    [CrossRef] [PubMed]
  5. F. Mazzotta, G. Wang, C. Hägglund, F. Höök, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosens. Bioelectron. 26(4), 1131–1136 (2010).
    [CrossRef] [PubMed]
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [CrossRef]
  7. F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” Appl. Phys. Lett. 92(25), 253103 (2008).
    [CrossRef]
  8. B. G. Streetman, and S. Banerjee, Solid State Electronic Devices, 5th ed. (Prentice-Hall, NJ, 2006).
  9. O. Bazkir, “Quantum efficiency determination of unbiased silicon photodiode and photodiode based trap detectors,” Rev. Adv. Mater. Sci. 21, 90–98 (2009).
  10. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tailsin hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
    [CrossRef]
  11. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
    [CrossRef]
  12. A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochim. Acta 435(2), 197–201 (2005).
    [CrossRef]

2010 (2)

A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010).
[CrossRef] [PubMed]

F. Mazzotta, G. Wang, C. Hägglund, F. Höök, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosens. Bioelectron. 26(4), 1131–1136 (2010).
[CrossRef] [PubMed]

2009 (2)

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

O. Bazkir, “Quantum efficiency determination of unbiased silicon photodiode and photodiode based trap detectors,” Rev. Adv. Mater. Sci. 21, 90–98 (2009).

2008 (1)

F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” Appl. Phys. Lett. 92(25), 253103 (2008).
[CrossRef]

2005 (1)

A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochim. Acta 435(2), 197–201 (2005).
[CrossRef]

2003 (1)

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tailsin hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

2002 (1)

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

1998 (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[CrossRef] [PubMed]

Akbari, A.

Arce, A.

A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochim. Acta 435(2), 197–201 (2005).
[CrossRef]

A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochim. Acta 435(2), 197–201 (2005).
[CrossRef]

Barnes, W. L.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

Bazkir, O.

O. Bazkir, “Quantum efficiency determination of unbiased silicon photodiode and photodiode based trap detectors,” Rev. Adv. Mater. Sci. 21, 90–98 (2009).

Berini, P.

Brolo, A. G.

F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” Appl. Phys. Lett. 92(25), 253103 (2008).
[CrossRef]

Chen, S.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

Ebbesen, T. W.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Eftekhari, F.

F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” Appl. Phys. Lett. 92(25), 253103 (2008).
[CrossRef]

Ferreira, J.

F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” Appl. Phys. Lett. 92(25), 253103 (2008).
[CrossRef]

Genet, C.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tailsin hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Gordon, R.

F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” Appl. Phys. Lett. 92(25), 253103 (2008).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Hägglund, C.

F. Mazzotta, G. Wang, C. Hägglund, F. Höök, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosens. Bioelectron. 26(4), 1131–1136 (2010).
[CrossRef] [PubMed]

Höök, F.

F. Mazzotta, G. Wang, C. Hägglund, F. Höök, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosens. Bioelectron. 26(4), 1131–1136 (2010).
[CrossRef] [PubMed]

Huang, W.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

Jonsson, M. P.

F. Mazzotta, G. Wang, C. Hägglund, F. Höök, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosens. Bioelectron. 26(4), 1131–1136 (2010).
[CrossRef] [PubMed]

Lezec, H. J.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[CrossRef] [PubMed]

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[CrossRef] [PubMed]

Mazzotta, F.

F. Mazzotta, G. Wang, C. Hägglund, F. Höök, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosens. Bioelectron. 26(4), 1131–1136 (2010).
[CrossRef] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[CrossRef] [PubMed]

Sinton, D.

F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” Appl. Phys. Lett. 92(25), 253103 (2008).
[CrossRef]

Soto, A.

A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochim. Acta 435(2), 197–201 (2005).
[CrossRef]

Su, X.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

Tait, R. N.

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

van Exter, M. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tailsin hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Wang, G.

F. Mazzotta, G. Wang, C. Hägglund, F. Höök, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosens. Bioelectron. 26(4), 1131–1136 (2010).
[CrossRef] [PubMed]

Wang, Q.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

Wang, Y.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tailsin hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Wu, S.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

Zhao, J.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

Zhu, D.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

Zhu, Y.

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Wang, X. Su, Y. Zhu, Q. Wang, D. Zhu, J. Zhao, S. Chen, W. Huang, and S. Wu, “Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns,” Appl. Phys. Lett. 95(24), 241106 (2009).
[CrossRef]

F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” Appl. Phys. Lett. 92(25), 253103 (2008).
[CrossRef]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[CrossRef]

Biosens. Bioelectron. (2)

F. Mazzotta, G. Wang, C. Hägglund, F. Höök, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosens. Bioelectron. 26(4), 1131–1136 (2010).
[CrossRef] [PubMed]

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tailsin hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Rev. Adv. Mater. Sci. (1)

O. Bazkir, “Quantum efficiency determination of unbiased silicon photodiode and photodiode based trap detectors,” Rev. Adv. Mater. Sci. 21, 90–98 (2009).

Thermochim. Acta (1)

A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochim. Acta 435(2), 197–201 (2005).
[CrossRef]

Other (2)

B. G. Streetman, and S. Banerjee, Solid State Electronic Devices, 5th ed. (Prentice-Hall, NJ, 2006).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag Tracts Mod. Phys. 111 (Springer-Verlag, 1988)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Integrated nanoplasmonic biosensor designs with (a) symmetrical and (b) asymmetrical nanohole arrays structure.

Fig. 2
Fig. 2

(a) Experimental set-up. (b) Detector responses at different analyzer angular positions and at two PEM modulation depths: 90deg. and 180deg. Dotted lines correspond to the signal in absence of analyzer.

Fig. 3
Fig. 3

a) Si-based nanoplasmonic device schematics and SEM image of the nanoholes array; b) Responses of the system for different ethanol concentrations for one polarization and rotating polarization.

Fig. 4
Fig. 4

Responses of the system for different ethanol concentrations for one polarization on the symmetric structure and rotating polarization on the asymmetric structure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ = [ ( m a x ) 2 + ( n a y ) 2 ] 1 2 n a 2 ϵ m n a 2 + ϵ m ,
J QWP =   ( 1 + i 1 i 1 i 1 + i ) ,  J PEM =   ( e 2 0 0 e 2 ) ,   J sample =   ( A P 0 0 A S ) ,
I= 1 2 ( A P 2 +A S 2 + ( A P 2 -A S 2 ) sinφ ) .
I p h = q S i l l ( 1 ρ ) reflection at the Si/SiO 2  interface exp ( α o x d o x ) in dielectric absorption ( 1 exp ( α S i X d ) ) photons involved in carriers photogeneration λ h c I ,

Metrics