Abstract

We present an experimental comparison of modulation formats for optical intensity modulated links with direct detection. Specifically, we compare OOK, QPSK on an electrical subcarrier and a new modulation format named OOPSK. The OOPSK modulation format is shown to have better sensitivity than the other modulation formats, in agreement with theoretical predictions. The impact of propagation in multimode fiber is also studied and the results show that all modulation formats have similar sensitivity penalties, with respect to the fibre length.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
    [CrossRef]
  2. S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
    [CrossRef]
  3. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
    [CrossRef]
  4. J. E. Cunningham, D. Beckman, D. Huang, T. Sze, K. Cai, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs using 0.13 μm CMOS,” OSA Topical Meeting on Information Photonics , (2005).
  5. F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK- and PAM-4 modulation for 10 Gbit/s Transmission over up to 300 m polymer optical fiber,” Optical Fiber Communication Conference, OSA Technical Digest (2008), paper OWB5.
  6. F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “PAM-4 signalling for gigabit transmission over standard step-index plastic optical fiber using light emitting diodes,” European Conference on Optical Communication , (2008), paper We2A3.
    [CrossRef]
  7. J. R. Barry, Wireless Infrared Communications (Kluwer, 1994).
    [CrossRef]
  8. S. Hranilovic, Wireless Optical Communication Systems (Springer, 2005).
  9. A. O. J. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” Optical Fiber Communication Conference , OSA Technical Digest, (2009), paper OTuE1.
  10. K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
    [CrossRef]
  11. B.-E. Olsson and M. Sköld, “QPSK transmitter based on optical amplitude modulation of electrically generated QPSK signal,” Asia Optical Fiber Communication & Optoelectronic Exposition & Conference , OSA Technical Digest, (2008), paper SaA3.
  12. B.-E. Olsson and A. Alping, “Electro-optical subcarrier modulation transmitter for 100 GbE DWDM transport,” Asia Optical Fiber Communication & Optoelectronic Exposition & Conference , OSA Technical Digest, (2008), paper SaF3.
  13. B.-E. Olsson, J. Mårtensson, A. Kristiansson, and A. Alping, “RF-assisted optical dual-carrier 112 Gbit/s polarization-multiplexed 16-QAM transmitter,” Optical Fiber Communication Conference , OSA Technical Digest (2010), paper OMK5.
  14. S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation,” J. Opt. Netw. 7, 183–196 (2008), (Invited paper).
    [CrossRef]
  15. S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multi-tone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Conference on Optical Fiber Communication , OSA Technical Digest, (2009), paper OWM2.
  16. H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
    [CrossRef]
  17. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
    [CrossRef]
  18. R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun . 49, 2164–2171 (2001).
    [CrossRef]
  19. W. Kang and S. Hranilovic, “Optical power reduction for multiple-subcarrier modulated indoor wireless optical channels,” IEEE International Conference on Communications , (2006), 2743–2748.
    [CrossRef]
  20. S. Hranilovic and D. A. Johns, “A multilevel modulation scheme for high-speed wireless infrared communications,” in IEEE International Symposium on Circuits and Systems , (1999), 338–341.
  21. S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Trans. Inf. Theory 49, 1385–1399 (2003).
    [CrossRef]
  22. S. Hranilovic (2005), “On the design of bandwidth efficient signalling for indoor wireless optical channels,” Int. J. Commun. Syst. 18, 205–228 (2005).
    [CrossRef]
  23. J. Karout, E. Agrell, and M. Karlsson, “Power efficient subcarrier modulation for intensity modulated channels,” Opt. Express 18, 17913–17921 (2010).
    [CrossRef] [PubMed]
  24. R. G. Gallager, Principles of Digital Communication (Cambridge, 2008).

2010 (4)

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
[CrossRef]

J. Karout, E. Agrell, and M. Karlsson, “Power efficient subcarrier modulation for intensity modulated channels,” Opt. Express 18, 17913–17921 (2010).
[CrossRef] [PubMed]

2009 (2)

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

2008 (2)

S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation,” J. Opt. Netw. 7, 183–196 (2008), (Invited paper).
[CrossRef]

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “PAM-4 signalling for gigabit transmission over standard step-index plastic optical fiber using light emitting diodes,” European Conference on Optical Communication , (2008), paper We2A3.
[CrossRef]

2006 (1)

W. Kang and S. Hranilovic, “Optical power reduction for multiple-subcarrier modulated indoor wireless optical channels,” IEEE International Conference on Communications , (2006), 2743–2748.
[CrossRef]

2005 (2)

S. Hranilovic (2005), “On the design of bandwidth efficient signalling for indoor wireless optical channels,” Int. J. Commun. Syst. 18, 205–228 (2005).
[CrossRef]

J. E. Cunningham, D. Beckman, D. Huang, T. Sze, K. Cai, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs using 0.13 μm CMOS,” OSA Topical Meeting on Information Photonics , (2005).

2003 (1)

S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Trans. Inf. Theory 49, 1385–1399 (2003).
[CrossRef]

2001 (1)

R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun . 49, 2164–2171 (2001).
[CrossRef]

1999 (1)

S. Hranilovic and D. A. Johns, “A multilevel modulation scheme for high-speed wireless infrared communications,” in IEEE International Symposium on Circuits and Systems , (1999), 338–341.

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Agrell, E.

Andrekson, P. A.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

J. R. Barry, Wireless Infrared Communications (Kluwer, 1994).
[CrossRef]

Beckman, D.

J. E. Cunningham, D. Beckman, D. Huang, T. Sze, K. Cai, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs using 0.13 μm CMOS,” OSA Topical Meeting on Information Photonics , (2005).

Bimberg, D.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

Blokhin, S. A.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

Breyer, F.

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation,” J. Opt. Netw. 7, 183–196 (2008), (Invited paper).
[CrossRef]

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “PAM-4 signalling for gigabit transmission over standard step-index plastic optical fiber using light emitting diodes,” European Conference on Optical Communication , (2008), paper We2A3.
[CrossRef]

Cai, K.

J. E. Cunningham, D. Beckman, D. Huang, T. Sze, K. Cai, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs using 0.13 μm CMOS,” OSA Topical Meeting on Information Photonics , (2005).

Cunningham, J. E.

J. E. Cunningham, D. Beckman, D. Huang, T. Sze, K. Cai, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs using 0.13 μm CMOS,” OSA Topical Meeting on Information Photonics , (2005).

Fiol, G.

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

Gustavsson, J. S.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

Haglund, Å.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

Hanik, N.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “PAM-4 signalling for gigabit transmission over standard step-index plastic optical fiber using light emitting diodes,” European Conference on Optical Communication , (2008), paper We2A3.
[CrossRef]

Hopfer, F.

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

Hranilovic, S.

W. Kang and S. Hranilovic, “Optical power reduction for multiple-subcarrier modulated indoor wireless optical channels,” IEEE International Conference on Communications , (2006), 2743–2748.
[CrossRef]

S. Hranilovic (2005), “On the design of bandwidth efficient signalling for indoor wireless optical channels,” Int. J. Commun. Syst. 18, 205–228 (2005).
[CrossRef]

S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Trans. Inf. Theory 49, 1385–1399 (2003).
[CrossRef]

S. Hranilovic and D. A. Johns, “A multilevel modulation scheme for high-speed wireless infrared communications,” in IEEE International Symposium on Circuits and Systems , (1999), 338–341.

S. Hranilovic, Wireless Optical Communication Systems (Springer, 2005).

Huang, D.

J. E. Cunningham, D. Beckman, D. Huang, T. Sze, K. Cai, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs using 0.13 μm CMOS,” OSA Topical Meeting on Information Photonics , (2005).

Joel, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

Johns, D. A.

S. Hranilovic and D. A. Johns, “A multilevel modulation scheme for high-speed wireless infrared communications,” in IEEE International Symposium on Circuits and Systems , (1999), 338–341.

Kahn, J. M.

R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun . 49, 2164–2171 (2001).
[CrossRef]

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Kang, W.

W. Kang and S. Hranilovic, “Optical power reduction for multiple-subcarrier modulated indoor wireless optical channels,” IEEE International Conference on Communications , (2006), 2743–2748.
[CrossRef]

Karlsson, M.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

J. Karout, E. Agrell, and M. Karlsson, “Power efficient subcarrier modulation for intensity modulated channels,” Opt. Express 18, 17913–17921 (2010).
[CrossRef] [PubMed]

Karout, J.

Kögel, B.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

Koonen, A. M. J.

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation,” J. Opt. Netw. 7, 183–196 (2008), (Invited paper).
[CrossRef]

Krishnamoorthy, A. V.

J. E. Cunningham, D. Beckman, D. Huang, T. Sze, K. Cai, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs using 0.13 μm CMOS,” OSA Topical Meeting on Information Photonics , (2005).

Kschischang, F. R.

S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Trans. Inf. Theory 49, 1385–1399 (2003).
[CrossRef]

Larsson, A.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

Ledentsov, N. N.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

Lee, S. C. J.

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation,” J. Opt. Netw. 7, 183–196 (2008), (Invited paper).
[CrossRef]

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “PAM-4 signalling for gigabit transmission over standard step-index plastic optical fiber using light emitting diodes,” European Conference on Optical Communication , (2008), paper We2A3.
[CrossRef]

Lott, J. A.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

Maximov, M. V.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

Mutig, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

Nadtochiy, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

Nadtochiy, A. M.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

Okonkwo, C.

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
[CrossRef]

Olsson, B.-E.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

Randel, S.

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation,” J. Opt. Netw. 7, 183–196 (2008), (Invited paper).
[CrossRef]

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “PAM-4 signalling for gigabit transmission over standard step-index plastic optical fiber using light emitting diodes,” European Conference on Optical Communication , (2008), paper We2A3.
[CrossRef]

Rhodin, A.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

Shchukin, V. A.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

Szczerba, K.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

Sze, T.

J. E. Cunningham, D. Beckman, D. Huang, T. Sze, K. Cai, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs using 0.13 μm CMOS,” OSA Topical Meeting on Information Photonics , (2005).

Tangdiongga, E.

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
[CrossRef]

van den Boom, H. P. A.

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation,” J. Opt. Netw. 7, 183–196 (2008), (Invited paper).
[CrossRef]

Westbergh, P.

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

Yang, H.

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
[CrossRef]

You, R.

R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun . 49, 2164–2171 (2001).
[CrossRef]

Electron. Lett. (3)

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[CrossRef]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

European Conference on Optical Communication (2)

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “PAM-4 signalling for gigabit transmission over standard step-index plastic optical fiber using light emitting diodes,” European Conference on Optical Communication , (2008), paper We2A3.
[CrossRef]

K. Szczerba, B.-E. Olsson, P. Westbergh, A. Rhodin, J. S. Gustavsson, Å. Haglund, M. Karlsson, A. Larsson, and P. A. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication , (2010), paper We7B2.
[CrossRef]

IEEE International Conference on Communications (1)

W. Kang and S. Hranilovic, “Optical power reduction for multiple-subcarrier modulated indoor wireless optical channels,” IEEE International Conference on Communications , (2006), 2743–2748.
[CrossRef]

IEEE International Symposium on Circuits and Systems (1)

S. Hranilovic and D. A. Johns, “A multilevel modulation scheme for high-speed wireless infrared communications,” in IEEE International Symposium on Circuits and Systems , (1999), 338–341.

IEEE Trans. Commun (1)

R. You and J. M. Kahn, “Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals,” IEEE Trans. Commun . 49, 2164–2171 (2001).
[CrossRef]

IEEE Trans. Inf. Theory (1)

S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Trans. Inf. Theory 49, 1385–1399 (2003).
[CrossRef]

Int. J. Commun. Syst. (1)

S. Hranilovic (2005), “On the design of bandwidth efficient signalling for indoor wireless optical channels,” Int. J. Commun. Syst. 18, 205–228 (2005).
[CrossRef]

J. Lightwave Technol (1)

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol . 28, 352–359 (2010).
[CrossRef]

J. Opt. Netw. (1)

Opt. Express (1)

OSA Topical Meeting on Information Photonics (1)

J. E. Cunningham, D. Beckman, D. Huang, T. Sze, K. Cai, and A. V. Krishnamoorthy, “PAM-4 signaling over VCSELs using 0.13 μm CMOS,” OSA Topical Meeting on Information Photonics , (2005).

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Other (9)

S. C. J. Lee, F. Breyer, S. Randel, D. Cardenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multi-tone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Conference on Optical Fiber Communication , OSA Technical Digest, (2009), paper OWM2.

B.-E. Olsson and M. Sköld, “QPSK transmitter based on optical amplitude modulation of electrically generated QPSK signal,” Asia Optical Fiber Communication & Optoelectronic Exposition & Conference , OSA Technical Digest, (2008), paper SaA3.

B.-E. Olsson and A. Alping, “Electro-optical subcarrier modulation transmitter for 100 GbE DWDM transport,” Asia Optical Fiber Communication & Optoelectronic Exposition & Conference , OSA Technical Digest, (2008), paper SaF3.

B.-E. Olsson, J. Mårtensson, A. Kristiansson, and A. Alping, “RF-assisted optical dual-carrier 112 Gbit/s polarization-multiplexed 16-QAM transmitter,” Optical Fiber Communication Conference , OSA Technical Digest (2010), paper OMK5.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK- and PAM-4 modulation for 10 Gbit/s Transmission over up to 300 m polymer optical fiber,” Optical Fiber Communication Conference, OSA Technical Digest (2008), paper OWB5.

J. R. Barry, Wireless Infrared Communications (Kluwer, 1994).
[CrossRef]

S. Hranilovic, Wireless Optical Communication Systems (Springer, 2005).

A. O. J. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” Optical Fiber Communication Conference , OSA Technical Digest, (2009), paper OTuE1.

R. G. Gallager, Principles of Digital Communication (Cambridge, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Three dimensional constellation diagram of the OOPSK modulation format inscribed into the available signal space. The admissible signal space, from [21, Fig. 2], [8, Fig. 4.2], is the interior and the surface of the cone.

Fig. 2
Fig. 2

Transmitter and receiver structures for the OOPSK format. The H(f) block denotes a rectangular pulse shaping filter and the H r (f) is a matched filter. The mapper maps bits pairs to symbols.

Fig. 3
Fig. 3

The experimental setup diagram.

Fig. 4
Fig. 4

Experimental BER in the back to back case (a) and theoretical BER (b). At low BER, the OOPSK format has the the best sensitivity of all the compared modulation formats. The bit rate was 5 Gbps.

Fig. 5
Fig. 5

Experimental BER after propagation over 800 m (a) and 1000 m (b) of MMF. The OOPSK modulation format is still the best one, the subcarrier QPSK has the worst performance.

Fig. 6
Fig. 6

Experimental constellation diagram of the the OOPSK modulation in the back to back case. The top left diagram is an isometric projection of the three dimensional constellation. The top right diagram is a projection of the constellation on the traditional IQ plane. The two lower diagrams are side projections of the constellation.

Fig. 7
Fig. 7

Comparison of experimental OOPSK constellation diagrams for B2B, transmission over 800 m and 1000 m of MMF. The leftmost column contains projections of the OOPSK constellation diagram for B2B case, the centre one for 800 m and the rightmost one for 1000 m.

Fig. 8
Fig. 8

Experimental constellation diagrams of the the subcarrier QPSK modulation after back to back, to the left, transmission over 800 m of GI-MMF in the centre and after 1000 m of MMF to the right.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ 0 ( t ) = 1 T rect( t / T ) ,
Φ 1 ( t ) = 2 T cos ( 2 π f t ) rect( t / T ) ,
Φ 2 ( t ) = 2 T sin ( 2 π f t ) rect( t / T ) ,
rect( t )  = { 1 , if 0  t < 1 0 , otherwise ,

Metrics