Abstract

Titanium (Ti)-in-diffused lithium niobate waveguide mode filters fabricated using laser-induced forward transfer followed by thermal diffusion are presented. The mode control was achieved by adjusting the separation between adjacent Ti segments thus varying the average value of the refractive index along the length of the in-diffused channel waveguides. The fabrication details, loss measurements and near-field optical characterization of the mode filters are presented. Modeling results regarding the device performance are also discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [CrossRef]
  2. R. C. Alferness and L. L. Buhl, “Electro-optic waveguide TE–TM mode converter with low drive voltage,” Opt. Lett. 5(11), 473–475 (1980).
    [CrossRef] [PubMed]
  3. D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkötter, R. Ricken, and W. Sohler, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguides,” Opt. Lett. 24(13), 896–898 (1999).
    [CrossRef]
  4. C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010).
    [CrossRef]
  5. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
    [CrossRef]
  6. K. D. Kyrkis, A. A. Andreadaki, D. G. Papazoglou, and I. Zergioti, Recent Advances in Laser Processing of Materials, J. Perrière, E. Millon, and E. Fogarassy, eds. (Elsevier, 2006), p. 213.
  7. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
    [CrossRef]
  8. S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Etching and printing of diffractive optical microstructures by a femtosecond excimer laser,” Appl. Opt. 38(11), 2301–2308 (1999).
    [CrossRef]
  9. A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
    [CrossRef]
  10. K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
    [CrossRef]
  11. I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1-4), 584–589 (2005).
    [CrossRef]
  12. G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2(6), 683–700 (1993).
    [CrossRef]
  13. D. Castaldini, P. Bassi, P. Aschieri, S. Tascu, M. De Micheli, and P. A. Baldi, “High performance mode adapters based on segmented SPE:LiNbO3 waveguides,” Opt. Express 17(20), 17868–17873 (2009).
    [CrossRef] [PubMed]
  14. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
    [CrossRef]

2010

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010).
[CrossRef]

2009

K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

D. Castaldini, P. Bassi, P. Aschieri, S. Tascu, M. De Micheli, and P. A. Baldi, “High performance mode adapters based on segmented SPE:LiNbO3 waveguides,” Opt. Express 17(20), 17868–17873 (2009).
[CrossRef] [PubMed]

2006

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

2005

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1-4), 584–589 (2005).
[CrossRef]

1999

1993

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2(6), 683–700 (1993).
[CrossRef]

1987

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[CrossRef]

1986

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[CrossRef]

1985

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

1980

Adrian, F. J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[CrossRef]

Alferness, R. C.

Aschieri, P.

Auyeung, R.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

Baldi, P. A.

Banks, D. P.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010).
[CrossRef]

K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

Bassi, P.

Bohandy, J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[CrossRef]

Buhl, L. L.

Carenco, A.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[CrossRef]

Castaldini, D.

Chrisey, D.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

Daguet, C.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[CrossRef]

De Micheli, M.

Duignan, M.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

Eason, R. W.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010).
[CrossRef]

K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

Fardel, R.

K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

Fitz-Gerald, J.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

Fotakis, C.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1-4), 584–589 (2005).
[CrossRef]

S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Etching and printing of diffractive optical microstructures by a femtosecond excimer laser,” Appl. Opt. 38(11), 2301–2308 (1999).
[CrossRef]

Fouchet, S.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[CrossRef]

Ganguly, P.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Grivas, C.

K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

Grundkötter, W.

Guglielmi, R.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[CrossRef]

Haase, C.

Herrmann, H.

Hofmann, D.

Ikiades, A.

Kafetzopoulos, D.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1-4), 584–589 (2005).
[CrossRef]

Kapsetaki, M.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1-4), 584–589 (2005).
[CrossRef]

Karaiskou, A.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1-4), 584–589 (2005).
[CrossRef]

Karthe, W.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2(6), 683–700 (1993).
[CrossRef]

Kaur, K.

K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

Kaur, K. S.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010).
[CrossRef]

Kim, B. F.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[CrossRef]

Koundourakis, G.

Lakeou, S.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

Lippert, T.

K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

Mailis, S.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010).
[CrossRef]

S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Etching and printing of diffractive optical microstructures by a femtosecond excimer laser,” Appl. Opt. 38(11), 2301–2308 (1999).
[CrossRef]

May-Smith, T. C.

K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

McGill, R.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

Mills, J. D.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

Nagel, M.

K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

Nguyen, V.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

Papakonstantinou, P.

Papazoglou, D.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1-4), 584–589 (2005).
[CrossRef]

Patentalaki, A.

Piqué, A.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

Richter, B.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2(6), 683–700 (1993).
[CrossRef]

Ricken, R.

Riviere, L.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[CrossRef]

Schreiber, G.

Sohler, W.

Sones, C. L.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010).
[CrossRef]

Tascu, S.

Tittelbach, G.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2(6), 683–700 (1993).
[CrossRef]

Vainos, N. A.

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Wu, H.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

Wu, P.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

Ying, Y. J.

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010).
[CrossRef]

Zergioti, I.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1-4), 584–589 (2005).
[CrossRef]

S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Etching and printing of diffractive optical microstructures by a femtosecond excimer laser,” Appl. Opt. 38(11), 2301–2308 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

A. Piqué, D. Chrisey, R. Auyeung, J. Fitz-Gerald, H. Wu, R. McGill, S. Lakeou, P. Wu, V. Nguyen, and M. Duignan, “A novel laser transfer process for direct writing of electronic and sensor materials,” Appl. Phys., A Mater. Sci. Process. 69(Suppl.), S279–S284 (1999).
[CrossRef]

C. L. Sones, K. S. Kaur, P. Ganguly, D. P. Banks, Y. J. Ying, R. W. Eason, and S. Mailis, “Laser-Induced-Forward-Transfer: A rapid prototyping tool for fabrication of photonic devices,” Appl. Phys., A Mater. Sci. Process. 101(2), 333–338 (2010).
[CrossRef]

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Appl. Surf. Sci.

I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Time resolved schlieren study of sub-picosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1-4), 584–589 (2005).
[CrossRef]

J. Appl. Phys.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[CrossRef]

K. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

J. Lightwave Technol.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[CrossRef]

Opt. Express

Opt. Lett.

Pure Appl. Opt.

G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three transmission methods for integrated optical waveguide propagation loss measurement,” Pure Appl. Opt. 2(6), 683–700 (1993).
[CrossRef]

Other

K. D. Kyrkis, A. A. Andreadaki, D. G. Papazoglou, and I. Zergioti, Recent Advances in Laser Processing of Materials, J. Perrière, E. Millon, and E. Fogarassy, eds. (Elsevier, 2006), p. 213.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the LIFT technique for printing segmented Ti lines onto LN substrates. The exaggerated version of how the Ti dots separate out by increasing speed from one end (port 1) of the substrate to the other (port 2) for fabrication of a tapered waveguide along with constant velocity lines for comparison are also shown.

Fig. 2
Fig. 2

Experimental set-up used for optically characterizing the waveguides.

Fig. 3
Fig. 3

(b) Near field intensity profiles captured from a waveguide written with a constant velocity of 2.5 mm/s. (d-f): near field intensity profiles of tapered waveguides written at accelerations of 0.3, 0.4 and 0.5 mm/s2 respectively when the light was launched from port 1. (a) and (c): near field intensity profiles corresponding to the waveguide written with an acceleration of 0.3 mm/s2 when the light was launched from port 2.

Fig. 4
Fig. 4

(a) Shows the refractive index profile for the segmented Ti:LN waveguide with the brighter regions corresponding to higher index. (b) Shows the light propagation pattern when TM00 mode was launched from the 3 µm end of the waveguide.

Fig. 5
Fig. 5

Mode profiles obtained from the (i) 3 µm end and (ii) 0 µm end of the segmented Ti:LN waveguide. The positions where the modes were captured are marked as red in Fig. 4 (b).

Fig. 6
Fig. 6

Simulated near field intensity profiles obtained from (a) the high index and (b) the low index port of a continuous Ti:LN waveguide. The mode size increases as the refractive index contrast decreases along the length of the waveguide.

Tables (1)

Tables Icon

Table 1 Gaussian Fit MFD Values for Mode Profiles Captured from Waveguides Written with Acceleration of 0.3, 0.4 and 0.5 mm/s2 Respectively When the Light was Launched from Port 1 Along with the MFD Value for the Fundamental Mode on the Higher Index Port 1 for Tapered Waveguide Written with 0.3 mm/s2 Acceleration When Light was Launched from Port 2

Metrics