Abstract

Arrays of gold single-strip and double-strip nano-antennas, with resonance in the wavelength range of 1200-1600nm, were fabricated on the top of InGaAs/InP multi quantum well structure. Photo-luminescence from the quantum-wells was measured and shown to be enhanced by a factor of up to 9, with maximum enhancement wavelength corresponding to the nano-antennas resonance. Emission enhancement is attributed to the coupling of emitting charge-carriers to the plasmonic nano-antennas, causing an estimated increase in the radiative recombination rate by a factor of ~25, thus making it dominant over non-radiative recombination. This effect will enable fast modulation of InP-based nano-emitters spontaneously emitting at telecom-wavelength.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  3. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
    [CrossRef] [PubMed]
  4. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  5. J. J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
    [CrossRef] [PubMed]
  6. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]
  7. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [CrossRef] [PubMed]
  8. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25(10), 1748 (2008).
    [CrossRef]
  9. C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75(17), 3098–3101 (1995).
    [CrossRef] [PubMed]
  10. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806 (1996).
    [CrossRef]
  11. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Phys. Rev. Lett. 82, 257 (2003).
  12. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
    [CrossRef] [PubMed]
  13. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
    [CrossRef]
  14. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  15. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
    [CrossRef]
  16. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
    [CrossRef]
  17. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
    [CrossRef] [PubMed]
  18. R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
    [CrossRef]
  19. T. Qiu, F. Kong, X. Yu, W. Zhang, X. Lang, and P. K. Chu, “Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays,” Appl. Phys. Lett. 95(21), 213104 (2009).
    [CrossRef]
  20. A. Gopinath, S. V. Boriskina, S. Yerci, R. Li, and L. Dal Negro, “Enhancement of the 1.5um Er3+ emission from quasiperiodic plasmonic arrays,” Appl. Phys. Lett. 96, 0171113 (2010).
  21. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
    [CrossRef] [PubMed]
  22. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [CrossRef] [PubMed]
  23. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000).
    [CrossRef]
  24. C. F. Bohren and D. R. Huffman, Scattering and Absorption from Metal Nano-Particles (Wiley, 2004).
  25. C. H. Henry, R. A. Logan, F. R. Merritt, and C. G. Bethea, “Radiative and nonradiative lifetimes in n-type and p-type 1.6 μm InGaAs,” Electron. Lett. 20(9), 358 (1984).
    [CrossRef]
  26. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
    [CrossRef]

2010

A. Gopinath, S. V. Boriskina, S. Yerci, R. Li, and L. Dal Negro, “Enhancement of the 1.5um Er3+ emission from quasiperiodic plasmonic arrays,” Appl. Phys. Lett. 96, 0171113 (2010).

2009

T. Qiu, F. Kong, X. Yu, W. Zhang, X. Lang, and P. K. Chu, “Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays,” Appl. Phys. Lett. 95(21), 213104 (2009).
[CrossRef]

Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

2008

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[CrossRef] [PubMed]

G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25(10), 1748 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
[CrossRef]

2007

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

2006

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

2005

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

J. J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Phys. Rev. Lett. 82, 257 (2003).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

2000

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000).
[CrossRef]

1996

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806 (1996).
[CrossRef]

1995

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75(17), 3098–3101 (1995).
[CrossRef] [PubMed]

1984

C. H. Henry, R. A. Logan, F. R. Merritt, and C. G. Bethea, “Radiative and nonradiative lifetimes in n-type and p-type 1.6 μm InGaAs,” Electron. Lett. 20(9), 358 (1984).
[CrossRef]

Agio, M.

Atwater, H. A.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000).
[CrossRef]

Bakker, R. M.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bawendi, M. G.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

Bethea, C. G.

C. H. Henry, R. A. Logan, F. R. Merritt, and C. G. Bethea, “Radiative and nonradiative lifetimes in n-type and p-type 1.6 μm InGaAs,” Electron. Lett. 20(9), 358 (1984).
[CrossRef]

Biteen, J. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

Boltasseva, A.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

Boriskina, S. V.

A. Gopinath, S. V. Boriskina, S. Yerci, R. Li, and L. Dal Negro, “Enhancement of the 1.5um Er3+ emission from quasiperiodic plasmonic arrays,” Appl. Phys. Lett. 96, 0171113 (2010).

Brandl, D. W.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

Cheng, S. L.

Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Chu, P. K.

T. Qiu, F. Kong, X. Yu, W. Zhang, X. Lang, and P. K. Chu, “Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays,” Appl. Phys. Lett. 95(21), 213104 (2009).
[CrossRef]

Dal Negro, L.

A. Gopinath, S. V. Boriskina, S. Yerci, R. Li, and L. Dal Negro, “Enhancement of the 1.5um Er3+ emission from quasiperiodic plasmonic arrays,” Appl. Phys. Lett. 96, 0171113 (2010).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75(17), 3098–3101 (1995).
[CrossRef] [PubMed]

Drachev, V. P.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Everitt, H. O.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Fischer, H.

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

Girard, C.

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75(17), 3098–3101 (1995).
[CrossRef] [PubMed]

Gómez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

Gong, Y.

Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Gopinath, A.

A. Gopinath, S. V. Boriskina, S. Yerci, R. Li, and L. Dal Negro, “Enhancement of the 1.5um Er3+ emission from quasiperiodic plasmonic arrays,” Appl. Phys. Lett. 96, 0171113 (2010).

Greffet, J. J.

J. J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

Gresillon, S.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Halas, N. J.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Phys. Rev. Lett. 82, 257 (2003).

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Henry, C. H.

C. H. Henry, R. A. Logan, F. R. Merritt, and C. G. Bethea, “Radiative and nonradiative lifetimes in n-type and p-type 1.6 μm InGaAs,” Electron. Lett. 20(9), 358 (1984).
[CrossRef]

Hirsch, L. R.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Phys. Rev. Lett. 82, 257 (2003).

Jackson, J. B.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Phys. Rev. Lett. 82, 257 (2003).

Kaminski, F.

Khurgin, J. B.

Kildishev, A. V.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Kong, F.

T. Qiu, F. Kong, X. Yu, W. Zhang, X. Lang, and P. K. Chu, “Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays,” Appl. Phys. Lett. 95(21), 213104 (2009).
[CrossRef]

Krenn, J. R.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000).
[CrossRef]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Kuroda, T.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Lamprecht, B.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000).
[CrossRef]

Lang, X.

T. Qiu, F. Kong, X. Yu, W. Zhang, X. Lang, and P. K. Chu, “Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays,” Appl. Phys. Lett. 95(21), 213104 (2009).
[CrossRef]

Lee, C.-W.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Leitner, A.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000).
[CrossRef]

Lewis, N. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

Li, R.

A. Gopinath, S. V. Boriskina, S. Yerci, R. Li, and L. Dal Negro, “Enhancement of the 1.5um Er3+ emission from quasiperiodic plasmonic arrays,” Appl. Phys. Lett. 96, 0171113 (2010).

Liu, Z.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

Logan, R. A.

C. H. Henry, R. A. Logan, F. R. Merritt, and C. G. Bethea, “Radiative and nonradiative lifetimes in n-type and p-type 1.6 μm InGaAs,” Electron. Lett. 20(9), 358 (1984).
[CrossRef]

Lu, J.

Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Martin, O. J. F.

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75(17), 3098–3101 (1995).
[CrossRef] [PubMed]

Merritt, F. R.

C. H. Henry, R. A. Logan, F. R. Merritt, and C. G. Bethea, “Radiative and nonradiative lifetimes in n-type and p-type 1.6 μm InGaAs,” Electron. Lett. 20(9), 358 (1984).
[CrossRef]

Mertens, H.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Neogi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nishi, Y.

Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Nordlander, P.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806 (1996).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pedersen, R. H.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Polman, A.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

Qiu, T.

T. Qiu, F. Kong, X. Yu, W. Zhang, X. Lang, and P. K. Chu, “Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays,” Appl. Phys. Lett. 95(21), 213104 (2009).
[CrossRef]

Rechberger, W.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000).
[CrossRef]

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

Sandoghdar, V.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Schider, G.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Soref, R. A.

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
[CrossRef]

Sun, G.

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Tackeuchi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
[CrossRef]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
[CrossRef]

Vuckovic, J.

Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Wang, H.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

Weeber, J. C.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000).
[CrossRef]

West, J. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Phys. Rev. Lett. 82, 257 (2003).

Westcott, S. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Phys. Rev. Lett. 82, 257 (2003).

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

Yablonovitch, E.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Yerci, S.

A. Gopinath, S. V. Boriskina, S. Yerci, R. Li, and L. Dal Negro, “Enhancement of the 1.5um Er3+ emission from quasiperiodic plasmonic arrays,” Appl. Phys. Lett. 96, 0171113 (2010).

Yu, X.

T. Qiu, F. Kong, X. Yu, W. Zhang, X. Lang, and P. K. Chu, “Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays,” Appl. Phys. Lett. 95(21), 213104 (2009).
[CrossRef]

Yuan, H. K.

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

Zhang, W.

T. Qiu, F. Kong, X. Yu, W. Zhang, X. Lang, and P. K. Chu, “Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays,” Appl. Phys. Lett. 95(21), 213104 (2009).
[CrossRef]

Acc. Chem. Res.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806 (1996).
[CrossRef]

Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vuckovic, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101 (2008).
[CrossRef]

T. Qiu, F. Kong, X. Yu, W. Zhang, X. Lang, and P. K. Chu, “Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays,” Appl. Phys. Lett. 95(21), 213104 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, S. Yerci, R. Li, and L. Dal Negro, “Enhancement of the 1.5um Er3+ emission from quasiperiodic plasmonic arrays,” Appl. Phys. Lett. 96, 0171113 (2010).

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379 (2000).
[CrossRef]

Electron. Lett.

C. H. Henry, R. A. Logan, F. R. Merritt, and C. G. Bethea, “Radiative and nonradiative lifetimes in n-type and p-type 1.6 μm InGaAs,” Electron. Lett. 20(9), 358 (1984).
[CrossRef]

J. Opt. Soc. Am. B

N. J. Phys.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
[CrossRef]

Nano Lett.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[CrossRef] [PubMed]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Phys. Rev. Lett.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Phys. Rev. Lett. 82, 257 (2003).

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

C. Girard, O. J. F. Martin, and A. Dereux, “Molecular lifetime changes induced by nanometer scale optical fields,” Phys. Rev. Lett. 75(17), 3098–3101 (1995).
[CrossRef] [PubMed]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

J. J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

Other

C. F. Bohren and D. R. Huffman, Scattering and Absorption from Metal Nano-Particles (Wiley, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

FDTD Simulated transmission and reflection spectrum of (a) 200nm single-strip, and (b) 2x 200nm double-strip with 50nm gap, and (c,d) Electric field amplitude respectively.

Fig. 2
Fig. 2

(a) Schematic of the Au double-strip nano-antenna on InP sample. SEM images of the nano-antennas on InP MQW, (b) 200nm single-strip, and (c,d) 2x200nm double-strip.

Fig. 3
Fig. 3

(a,b) Normalized transmission spectrum of double-strip nano-antennas (a) 2x 200nm, (b) 2X250nm, with gap of 50nm (red line) and 100nm (blue line). (c,d) PL enhancement spectrum for respective nano-antennas (blue), emission from reference (dotted), and emission from nano-antenna region (full).

Fig. 4
Fig. 4

(a,b) Normalized transmission spectrum of short-stripe nano-antennas (a) 200nm, (b) 250nm long. (c,d) PL enhancement spectrum (blue), emission from reference (dotted), and emission from nano-antenna region (full).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F P L = F l e n s η p r 1 + τ r a d / τ n r a d 1 + ( τ r a d / τ n r a d ) / F P η p r F l e n s τ r a d τ n r a d

Metrics