Abstract

The sun glint is a major issue for the observation of ocean color from space. For sensors without a tilting capacity, the observations at sub-tropical latitudes are contaminated by the bright pattern of the specular reflexion of the sun by the wavy sea surface. Common atmospheric correction algorithms are not designed to work in these observation conditions, reducing the spatial coverage at such latitudes by nearly a half. We describe an original atmospheric correction algorithm, named POLYMER, designed to recover ocean color parameters in the whole sun glint pattern. It has been applied to MERIS data, and validated against in-situ data from SIMBADA. The increase of useful coverage of MERIS measurements for ocean color is major, and the accuracy of the retrieved parameters is not significantly reduced in the presence of high sunglint, while, outside the sunglint area, it remains about the same as by using the standard algorithm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17, 1631–1636 (1978).
    [CrossRef] [PubMed]
  2. H. R. Gordon and D. K. Clark, “Clear water radiances for atmospheric correction of Coastal Zone Color Scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
    [CrossRef] [PubMed]
  3. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
    [CrossRef]
  4. H. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef] [PubMed]
  5. D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20(9), 1875–1916 (1999).
    [CrossRef]
  6. M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001).
    [CrossRef]
  7. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46, 1535–1547 (2007).
    [CrossRef] [PubMed]
  8. H. R. Gordon, T. Du, and T. Zhang, “Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption,” Appl. Opt. 36, 8670–8684 (1997).
    [CrossRef]
  9. C. Moulin, H. R. Gordon, R. M. Chomko, V. F. Banzon, and R. H. Evans, “Atmospheric correction of ocean color imagery through thick layers of Saharan dust,” Geophys. Res. Lett. 28, 5–8 (2001).
    [CrossRef]
  10. R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Rem. Sen. Environ. 84, 208–220 (2003).
    [CrossRef]
  11. C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance,” Rem. Sen. Environ. 113, 571–587 (2009).
    [CrossRef]
  12. P. Shanmugam and Y.-H. Ahn, “New atmospheric correction technique to retrieve the ocean colour from seawifs imagery in complex coastal waters,” J. Opt. A, Pure Appl. Opt. 9, 511–530 (2007).
    [CrossRef]
  13. H. Schiller and R. Doerffer, “Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data,” Int. J. Remote Sens. 20(9), 1735–1746 (1999).
    [CrossRef]
  14. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [CrossRef]
  15. J. Lenoble, M. Herman, J. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spect. Radiat. Transf. 107, 479–507 (2007).
    [CrossRef]
  16. L. D’Alba and P. Colagrande, “MERIS smile effect characterization and correction,” Tech. rep., ESA (2005).
  17. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
    [CrossRef]
  18. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters : a reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
    [CrossRef]
  19. A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
    [CrossRef]
  20. H. Buiteveld, J. H. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
    [CrossRef]
  21. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef] [PubMed]
  22. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998).
    [CrossRef]
  23. K. G. Ruddick, V. D. Cauver, and Y. J. Park, “Seaborne measurements of near-infrared water leaving reflectance: the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
    [CrossRef]
  24. J. Nelder and R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).
  25. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Environ. Res. Paper Air Force Geophysics Lab. (1979).
  26. C. Brockmann, “Limitations of the application of the MERIS atmospheric correction,” Meeting on MERIS and AATSR Calibration and Geophysical Validation (MAVT) (2006).
  27. G. Bécu, “Contribution à la vérification des observations spatiales de la couleur de l’océan à l’aide du réseau de radiomtres optiques SIMBADA,” Ph.D. thesis, Laboratoire d’Optique Atmosphérique (2004).
  28. K. Barker, C. Mazeran, C. Lerebourg, M. Bouvet, D. Antoine, M. Ondrusek, G. Zibordi, and S. Lavender, “MERMAID: The MEris MAtchup In-situ Database,” MERIS and (A)ATSR Workshop, Frascati (2008).
  29. A. Morel and D. Antoine, “Pigment index retrieval in case 1 waters, ATBD 2.7 MERIS,” Tech. rep., Laboratoire d’Océanographie de Villefranche (2007).
  30. D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008).
    [CrossRef]

2009 (1)

C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance,” Rem. Sen. Environ. 113, 571–587 (2009).
[CrossRef]

2008 (1)

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008).
[CrossRef]

2007 (4)

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[CrossRef]

P. Shanmugam and Y.-H. Ahn, “New atmospheric correction technique to retrieve the ocean colour from seawifs imagery in complex coastal waters,” J. Opt. A, Pure Appl. Opt. 9, 511–530 (2007).
[CrossRef]

J. Lenoble, M. Herman, J. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spect. Radiat. Transf. 107, 479–507 (2007).
[CrossRef]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46, 1535–1547 (2007).
[CrossRef] [PubMed]

2006 (1)

K. G. Ruddick, V. D. Cauver, and Y. J. Park, “Seaborne measurements of near-infrared water leaving reflectance: the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[CrossRef]

2003 (1)

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Rem. Sen. Environ. 84, 208–220 (2003).
[CrossRef]

2001 (3)

C. Moulin, H. R. Gordon, R. M. Chomko, V. F. Banzon, and R. H. Evans, “Atmospheric correction of ocean color imagery through thick layers of Saharan dust,” Geophys. Res. Lett. 28, 5–8 (2001).
[CrossRef]

M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001).
[CrossRef]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters : a reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

1999 (2)

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20(9), 1875–1916 (1999).
[CrossRef]

H. Schiller and R. Doerffer, “Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data,” Int. J. Remote Sens. 20(9), 1735–1746 (1999).
[CrossRef]

1998 (1)

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998).
[CrossRef]

1997 (2)

H. R. Gordon, T. Du, and T. Zhang, “Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption,” Appl. Opt. 36, 8670–8684 (1997).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[CrossRef]

1994 (2)

1993 (1)

1988 (1)

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
[CrossRef]

1981 (1)

1978 (1)

1965 (1)

J. Nelder and R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).

1954 (1)

Ahn, Y.-H.

P. Shanmugam and Y.-H. Ahn, “New atmospheric correction technique to retrieve the ocean colour from seawifs imagery in complex coastal waters,” J. Opt. A, Pure Appl. Opt. 9, 511–530 (2007).
[CrossRef]

Antoine, D.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008).
[CrossRef]

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20(9), 1875–1916 (1999).
[CrossRef]

Babin, M.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[CrossRef]

Bailey, S. W.

Banzon, V. F.

C. Moulin, H. R. Gordon, R. M. Chomko, V. F. Banzon, and R. H. Evans, “Atmospheric correction of ocean color imagery through thick layers of Saharan dust,” Geophys. Res. Lett. 28, 5–8 (2001).
[CrossRef]

Bécu, G.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008).
[CrossRef]

Bricaud, A.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[CrossRef]

Buiteveld, H.

H. Buiteveld, J. H. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Cauver, V. D.

K. G. Ruddick, V. D. Cauver, and Y. J. Park, “Seaborne measurements of near-infrared water leaving reflectance: the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[CrossRef]

Chomko, R. M.

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Rem. Sen. Environ. 84, 208–220 (2003).
[CrossRef]

C. Moulin, H. R. Gordon, R. M. Chomko, V. F. Banzon, and R. H. Evans, “Atmospheric correction of ocean color imagery through thick layers of Saharan dust,” Geophys. Res. Lett. 28, 5–8 (2001).
[CrossRef]

Clark, D. K.

Claustre, H.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[CrossRef]

Cox, C.

d’Ortenzio, F.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008).
[CrossRef]

Deuze, J.

J. Lenoble, M. Herman, J. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spect. Radiat. Transf. 107, 479–507 (2007).
[CrossRef]

Doerffer, R.

H. Schiller and R. Doerffer, “Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data,” Int. J. Remote Sens. 20(9), 1735–1746 (1999).
[CrossRef]

Donze, M.

H. Buiteveld, J. H. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Du, T.

Evans, R. H.

C. Moulin, H. R. Gordon, R. M. Chomko, V. F. Banzon, and R. H. Evans, “Atmospheric correction of ocean color imagery through thick layers of Saharan dust,” Geophys. Res. Lett. 28, 5–8 (2001).
[CrossRef]

Franz, B. A.

C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance,” Rem. Sen. Environ. 113, 571–587 (2009).
[CrossRef]

Gentili, B.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008).
[CrossRef]

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

Gordon, H.

Gordon, H. R.

C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance,” Rem. Sen. Environ. 113, 571–587 (2009).
[CrossRef]

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Rem. Sen. Environ. 84, 208–220 (2003).
[CrossRef]

C. Moulin, H. R. Gordon, R. M. Chomko, V. F. Banzon, and R. H. Evans, “Atmospheric correction of ocean color imagery through thick layers of Saharan dust,” Geophys. Res. Lett. 28, 5–8 (2001).
[CrossRef]

H. R. Gordon, T. Du, and T. Zhang, “Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption,” Appl. Opt. 36, 8670–8684 (1997).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[CrossRef]

H. R. Gordon and D. K. Clark, “Clear water radiances for atmospheric correction of Coastal Zone Color Scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

Hakvoort, J. H.

H. Buiteveld, J. H. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Herman, M.

J. Lenoble, M. Herman, J. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spect. Radiat. Transf. 107, 479–507 (2007).
[CrossRef]

Hooker, S. B.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008).
[CrossRef]

Kuchinke, C. P.

C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance,” Rem. Sen. Environ. 113, 571–587 (2009).
[CrossRef]

Lafrance, B.

J. Lenoble, M. Herman, J. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spect. Radiat. Transf. 107, 479–507 (2007).
[CrossRef]

Lenoble, J.

J. Lenoble, M. Herman, J. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spect. Radiat. Transf. 107, 479–507 (2007).
[CrossRef]

Loisel, H.

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998).
[CrossRef]

Maritorena, S.

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Rem. Sen. Environ. 84, 208–220 (2003).
[CrossRef]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters : a reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

Mead, R.

J. Nelder and R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).

Morel, A.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[CrossRef]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters : a reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20(9), 1875–1916 (1999).
[CrossRef]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
[CrossRef]

Moulin, C.

C. Moulin, H. R. Gordon, R. M. Chomko, V. F. Banzon, and R. H. Evans, “Atmospheric correction of ocean color imagery through thick layers of Saharan dust,” Geophys. Res. Lett. 28, 5–8 (2001).
[CrossRef]

Munk, W.

Nelder, J.

J. Nelder and R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).

Park, Y. J.

K. G. Ruddick, V. D. Cauver, and Y. J. Park, “Seaborne measurements of near-infrared water leaving reflectance: the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[CrossRef]

Ras, J.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[CrossRef]

Ruddick, K. G.

K. G. Ruddick, V. D. Cauver, and Y. J. Park, “Seaborne measurements of near-infrared water leaving reflectance: the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[CrossRef]

Santer, R.

J. Lenoble, M. Herman, J. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spect. Radiat. Transf. 107, 479–507 (2007).
[CrossRef]

Schiller, H.

H. Schiller and R. Doerffer, “Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data,” Int. J. Remote Sens. 20(9), 1735–1746 (1999).
[CrossRef]

Scott, A. J.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008).
[CrossRef]

Shanmugam, P.

P. Shanmugam and Y.-H. Ahn, “New atmospheric correction technique to retrieve the ocean colour from seawifs imagery in complex coastal waters,” J. Opt. A, Pure Appl. Opt. 9, 511–530 (2007).
[CrossRef]

Siegel, D. A.

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Rem. Sen. Environ. 84, 208–220 (2003).
[CrossRef]

Tailliez, D.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008).
[CrossRef]

Tanre, D.

J. Lenoble, M. Herman, J. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spect. Radiat. Transf. 107, 479–507 (2007).
[CrossRef]

Tieche, F.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[CrossRef]

Wang, M.

Zhang, T.

Appl. Opt. (7)

Computer J. (1)

J. Nelder and R. Mead, “A simplex method for function minimization,” Computer J. 7, 308–313 (1965).

Geophys. Res. Lett. (1)

C. Moulin, H. R. Gordon, R. M. Chomko, V. F. Banzon, and R. H. Evans, “Atmospheric correction of ocean color imagery through thick layers of Saharan dust,” Geophys. Res. Lett. 28, 5–8 (2001).
[CrossRef]

Int. J. Remote Sens. (2)

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20(9), 1875–1916 (1999).
[CrossRef]

H. Schiller and R. Doerffer, “Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data,” Int. J. Remote Sens. 20(9), 1735–1746 (1999).
[CrossRef]

J. Geophys. Res. (3)

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
[CrossRef]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters : a reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[CrossRef]

J. Geophys. Res. (Oceans) (1)

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res. (Oceans) 113, C07013 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

P. Shanmugam and Y.-H. Ahn, “New atmospheric correction technique to retrieve the ocean colour from seawifs imagery in complex coastal waters,” J. Opt. A, Pure Appl. Opt. 9, 511–530 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spect. Radiat. Transf. (1)

J. Lenoble, M. Herman, J. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spect. Radiat. Transf. 107, 479–507 (2007).
[CrossRef]

Limnol. Oceanogr. (3)

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[CrossRef]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a re-examination,” Limnol. Oceanogr. 43, 847–857 (1998).
[CrossRef]

K. G. Ruddick, V. D. Cauver, and Y. J. Park, “Seaborne measurements of near-infrared water leaving reflectance: the similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[CrossRef]

Proc. SPIE (1)

H. Buiteveld, J. H. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Rem. Sen. Environ. (2)

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Rem. Sen. Environ. 84, 208–220 (2003).
[CrossRef]

C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance,” Rem. Sen. Environ. 113, 571–587 (2009).
[CrossRef]

Other (6)

L. D’Alba and P. Colagrande, “MERIS smile effect characterization and correction,” Tech. rep., ESA (2005).

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Environ. Res. Paper Air Force Geophysics Lab. (1979).

C. Brockmann, “Limitations of the application of the MERIS atmospheric correction,” Meeting on MERIS and AATSR Calibration and Geophysical Validation (MAVT) (2006).

G. Bécu, “Contribution à la vérification des observations spatiales de la couleur de l’océan à l’aide du réseau de radiomtres optiques SIMBADA,” Ph.D. thesis, Laboratoire d’Optique Atmosphérique (2004).

K. Barker, C. Mazeran, C. Lerebourg, M. Bouvet, D. Antoine, M. Ondrusek, G. Zibordi, and S. Lavender, “MERMAID: The MEris MAtchup In-situ Database,” MERIS and (A)ATSR Workshop, Frascati (2008).

A. Morel and D. Antoine, “Pigment index retrieval in case 1 waters, ATBD 2.7 MERIS,” Tech. rep., Laboratoire d’Océanographie de Villefranche (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Examples of spectra for the model of water reflectances used in this study. It is based on two parameters: the chlorophyll concentration (chl) and the backscattering coefficient of suspended matter (bbNC ). On Fig. 1(a), bbNC is set to zero, and thus corresponds between 350 and 700 nm to the model by [18] (solid curve). It is extended from 700 to 900 nm using the similarity spectrum for turbid waters [23] (dashed curves). Figure 1(b) shows how the spectrum varies with the parameter bbNC , for two chlorophyll concentration.

Fig. 2
Fig. 2

Plots for the comparison between the simulated parameters (synthetic dataset, indicated by subscript “sim”), and the parameters retrieved by POLYMER (indicated by subscript “ret”). In these figures, noise has been added to TOA reflectances according to typical Sentinel-3 SNR. Each row corresponds to the following parameters: chlorophyll concentration, water reflectance at 443 nm and 560 nm. The first columns (Fig. 2(a), 2(d) and 2(g)) shows the regression between the synthetic and retrieved parameters, for the “mixed” case. The second columns (Figs. 2(b), 2(e) and 2(h)) shows the relative percent difference, between the retrieved and synthetic values ( ret-sim sim ), as a function of the sun glint reflectance; emphasis is put on the sun glint correction by using the case “no aerosol”. The difference between log10(chlret) and log10(chlsim) is multiplied by ln(10) to convert to relative percent difference of the chlorophyll concentration ( Δ chl chl ln ( 10 ) Δ log 10 ( chl ) ). The third columns (Figs. 2(c), 2(f) and 2(i)) shows the relative percent difference, between the retrieved and synthetic values, as a function of the aerosol optical thickness at 865 nm; emphasis is put on the aerosol correction by using the case “no glint”.

Fig. 3
Fig. 3

Summary of the relative biases (a) and RMSE (b) of the comparison between synthetic and retrieved water reflectances at each wavelength, for the “mixed” case, with and without noise added to TOA reflectances.

Fig. 4
Fig. 4

MERIS image from Mediterranean Sea, May 7, 2005. This image is contaminated by high sun glint on the right side of the image (ρ gli ≈ 10%). (a) Chlorophyll concentration for MEGS (“algal 1” parameter, black area is “PCD_15”), and (b) POLYMER algorithm. The color scale represents log10(chl). (c) Water reflectance at 560 nm, for MEGS (black area is “PCD_1_13”), and (b) POLYMER algorithm.

Fig. 5
Fig. 5

MERIS image from Sea of Japan / East Sea, 2004-03-13. (a) An aerosol event can be seen on the parameter ρ ^ 865 and (d) the aerosol optical thickness at 865 nm from MEGS processing. (b) and (c) show the chlorophyll concentration estimated respectively by the MEGS and POLYMER algorithms. (e) and (f) show the parameters c 0 (flat spectral dependency) and c 1 (spectral dependency in λ −1) estimated by POLYMER.

Fig. 6
Fig. 6

Global 3 days composites of the chlorophyll concentration parameter, June 3 to 5, 2003: (a) from MERIS/MEGS 7.4 products (where the flags “high glint”, “PCD_1_13” and “absorbing aerosols” have been applied to filter the pixels) and (b) from MERIS/POLYMER products.

Fig. 7
Fig. 7

Detail of Figs. 6(a) and 6(b) over the Arabian Sea: (a) MERIS/MEGS 7.4 and (b) MERIS/POLYMER.

Fig. 8
Fig. 8

Comparison between the in situ water reflectance from SIMBADA radiometer and the water reflectance estimated from MERIS data by the MEGS ((a)) and POLYMER ((b) for “set 1” and (c) for “set 2”) algorithms, at 560 nm. In “set 1”, HIGH GLINT, PCD_1_13, cloudy and case 2 match-ups are rejected. In “set 2”, only HIGH GLINT or PCD_1_13 match-ups are included (cloudy and case 2 match-ups are still rejected). On these figures, the symbols “+”, “·” and “•” represent respectively the flags “no glint”, “medium glint” and “high glint”, and the number of points N is differentiated in parentheses between these three classes. For “set 2”, the relative percent difference between ρ w , POLYMER + (490nm) and ρ w n , INSITU + (490nm) is plotted against the reflectance of the sun glint ρ gli (d). The relative percent difference between x 1 and x 2 if defined by % Diff = x 1 x 2 1 2 ( x 1 + x 2 ) .

Fig. 9
Fig. 9

Plots of the accuracy (bias, Fig. 9(a)) and precision (RMSE, Fig. 9(b)) from the comparison between SIMBADA data and the water reflectances estimated from MERIS data using MEGS and POLYMER processors (see Table 2), as a function of the wavelength.

Tables (2)

Tables Icon

Table 1 Distribution of All the “Non-Cloudy” Level 2 Pixels Between the MERIS Level 2 Sun Glint Flags, for the 43 Orbits Used to Generate the Global 3 Days Composite Presented on Fig. 6 *

Tables Icon

Table 2 The Comparison Between SIMBADA and MERIS Processed with MEGS and POLYMER, Done at 560 nm on Figs. 8(a) to 8(c), is Repeated for Other Wavelengths, and Chlorophyll Concentration*

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ρ TOA ( λ ) = π L TOA ( λ ) cos ( θ s ) F 0 ( λ )
ρ TOA ( λ ) = t oz ( λ ) · [ ρ mol ( λ ) + T ( λ ) ρ gli + ρ aer ( λ ) + ρ coupl ( λ ) + t ( λ ) ρ w + ( λ ) ]
ρ ( λ ) = ρ TOA ( λ ) t oz ( λ ) ρ mol + gli ( λ , V wind )
ρ mol ( λ ) + T ( λ ) ρ gli = ρ mol + gli ( λ , V wind ) + Δ ρ gli ( λ )
ρ ( λ ) = ρ ag ( λ ) + t ( λ ) ρ w + ( λ )
ρ ag ( λ ) = Δ ρ gli ( λ ) + ρ aer ( λ ) + ρ coupl ( λ )
ρ ag ( λ ) T 0 ( λ ) c 0 + c 1 λ 1 + c 2 λ 4
T 0 dir ( λ ) = exp [ τ m ( λ ) × ( 1 μ s + 1 μ v ) ]
T 0 dif ( λ ) = exp [ τ m ( λ ) 2 × ( 1 μ s + 1 μ v ) ]
T 0 ( λ ) = exp [ τ m ( λ ) × ( 1 1 2 exp ( ρ gli ρ gli , 0 ) ) × ( 1 μ s + 1 μ v ) ]
R w M M ( λ ) = f 1 2 b w ( λ ) + b b p ( λ ) + b b N C ( λ ) a ( λ )
ρ wmod + ( [ chl ] , b b N C , λ ) = { ρ w M M + ( [ chl ] , b b N C , λ ) [ λ < 700 nm ] ρ w S + ( λ ) ρ w M M + ( [ chl ] , b b N C , 700 nm ) / ρ w S + ( 700 nm ) [ λ 700 nm ]
T 0 ( λ ) c 0 + c 1 λ 1 + c 2 λ 4 ρ ( λ ) t ( λ ) ρ wmod + ( [ chl ] i , b b N C , i , λ )
ɛ i = 1 N λ j { T 0 ( λ ) c 0 + c 1 λ j 1 + c 2 λ j 4 [ ρ ( λ j ) t ( λ j ) ρ wmod + ( [ chl ] i , b b N C , i , λ j ) ] } 2
ρ w + ( λ ) = ρ ( λ ) ( T 0 ( λ ) c 0 + c 1 λ 1 + c 2 λ 4 ) t ( λ )

Metrics