Abstract

A fast-switching bistable optical intensity modulator is demonstrated. Using a dual-frequency cholesteric liquid crystal, the direct switching is achieved from the scattering focal conic state to the transparent long-pitch planar state. In comparison with the bistable cholesteric devices proposed previously, our device, characterized by its capability of direct two-way transitions between the two bistable states, possesses a very short transition time from the focal conic state to the planar state as short as 10 ms. No voltage has to be applied to sustain the optical states, making the device low energy consuming. Potential applications of this device are addressed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Doane, N. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
    [CrossRef]
  2. M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
    [CrossRef]
  3. C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M.-S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003).
    [CrossRef] [PubMed]
  4. J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
    [CrossRef]
  5. See, for example, S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001), Ch. 8.
  6. T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys. 85(11), 7511–7516 (1999).
    [CrossRef]
  7. D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
    [CrossRef]
  8. K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J. C. Kim, and T.-H. Yoon, “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Opt. Express 18(16), 16745–16750 (2010) (and references therein).
    [CrossRef] [PubMed]
  9. R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystal by rapid thermal processing,” Appl. Phys. Lett. 92(16), 163304 (2008).
    [CrossRef]
  10. H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
    [CrossRef]
  11. A. Ramamoorthy, Thermotropic Liquid Crystals (Springer, 2007), Ch. 10.
  12. Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100(2), 024906 (2006).
    [CrossRef]

2010 (2)

2008 (1)

R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystal by rapid thermal processing,” Appl. Phys. Lett. 92(16), 163304 (2008).
[CrossRef]

2006 (1)

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100(2), 024906 (2006).
[CrossRef]

2003 (1)

1999 (1)

T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys. 85(11), 7511–7516 (1999).
[CrossRef]

1997 (1)

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[CrossRef]

1994 (1)

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

1986 (1)

J. W. Doane, N. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

1974 (1)

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
[CrossRef]

Bücher, H. K.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
[CrossRef]

Doane, J. W.

J. W. Doane, N. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

Doane, J.-W.

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Fu, K.-Y.

Glasser, J.

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Huang, C.-Y.

Jin, H.-J.

Kawata, Y.

T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys. 85(11), 7511–7516 (1999).
[CrossRef]

Kim, J. C.

Kim, K.-H.

Klingbiel, R. T.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
[CrossRef]

Lavrentovich, O. D.

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100(2), 024906 (2006).
[CrossRef]

Lee, J.-H.

Lo, K.-Y.

Ma, J.

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
[CrossRef]

Moritake, H.

R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystal by rapid thermal processing,” Appl. Phys. Lett. 92(16), 163304 (2008).
[CrossRef]

Ozaki, R.

R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystal by rapid thermal processing,” Appl. Phys. Lett. 92(16), 163304 (2008).
[CrossRef]

Park, K.-H.

Shi, L.

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
[CrossRef]

Shinpo, T.

R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystal by rapid thermal processing,” Appl. Phys. Lett. 92(16), 163304 (2008).
[CrossRef]

Shiyanovskii, S. V.

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100(2), 024906 (2006).
[CrossRef]

Tsai, M.-S.

VanMeter, J. P.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
[CrossRef]

Vaz, N.

J. W. Doane, N. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

Wu, B.-G.

J. W. Doane, N. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

Xu, M.

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[CrossRef]

Yamaguchi, H.

T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys. 85(11), 7511–7516 (1999).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys. 85(11), 7511–7516 (1999).
[CrossRef]

Yang, D.-K.

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
[CrossRef]

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[CrossRef]

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Yaniv, Z.

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Yin, Y.

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100(2), 024906 (2006).
[CrossRef]

Yoon, T.-H.

Zumer, S.

J. W. Doane, N. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

Appl. Phys. Express (1)

J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 3(2), 021702 (2010).
[CrossRef]

Appl. Phys. Lett. (5)

D.-K. Yang, J.-W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystal by rapid thermal processing,” Appl. Phys. Lett. 92(16), 163304 (2008).
[CrossRef]

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186–188 (1974).
[CrossRef]

J. W. Doane, N. Vaz, B.-G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett. 70(6), 720–722 (1997).
[CrossRef]

J. Appl. Phys. (2)

T. Yamaguchi, H. Yamaguchi, and Y. Kawata, “Driving voltage of reflective cholesteric liquid crystal displays,” J. Appl. Phys. 85(11), 7511–7516 (1999).
[CrossRef]

Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys. 100(2), 024906 (2006).
[CrossRef]

Opt. Express (2)

Other (2)

See, for example, S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001), Ch. 8.

A. Ramamoorthy, Thermotropic Liquid Crystals (Springer, 2007), Ch. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the fast-switching bistable intensity modulator.

Fig. 2
Fig. 2

Temperature-dependent crossover frequencies of DFCLCs with various chiral-dopant concentrations.

Fig. 3
Fig. 3

Optical textures of a DFCLC with chiral-dopant concentration of 15.5 wt% for various applied voltages at 1 kHz.

Fig. 4
Fig. 4

Spectral characteristics of the 15.5 wt% DFCLC in the planar state and focal conic state at 0 V.

Fig. 5
Fig. 5

Schematic of the driving pulses used to switch a fast-switching bistable cholesteric cell from the focal conic state to planar state and then back to the focal conic state. The high frequency is in the scale of 100 kHz.

Fig. 6
Fig. 6

Dynamically optical responses of the 10 wt% DFCLC cell to voltage pulses of 20 Vrms as schematically presented in Fig. 5. Inset: Expanded scale for the optical response induced by a 100-kHz pulse (top left) and photographs of the fast-switching bistable cholesteric device in the planar state (bottom left) and the focal conic state (bottom right) at null voltage.

Tables (1)

Tables Icon

Table 1 Transition Times from the Focal Conic State to the Planar State in DFCLCs with Various Chiral-Dopant Concentrations at Four Different Frequencies1

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f c = A 0 exp ( E a k B T ) ,

Metrics