Abstract

We measured the absorption recovery times in reverse biased AlInGaAs multiple quantum well material designed to emit at around 1.5 μm wavelength. Absorption recovery times as low as 2.5ps were found at −4V bias, with values below 5ps consistently found for biases above 3V. The short absorption recovery times obtained under reverse bias were confirmed by using cross-absorption modulation in the material to demonstrate wavelength conversion of a 10GHz pulse train, showing both up and down conversion of the incident pulses.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
    [CrossRef]
  2. U. Keller, “Recent developments in compact ultrafast lasers,” Nature (London) 424, 831–838 (2003).
    [CrossRef]
  3. L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009).
    [CrossRef]
  4. K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11, 278–284 (2005).
    [CrossRef]
  5. J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994).
    [CrossRef]
  6. E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
    [CrossRef]
  7. R. Takahashi, “Low-temperature-grown surface-reflection all-optical switch (LOTOS),” Opt. Quantum Electron. 33, 999 (2001).
    [CrossRef]
  8. C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).
  9. D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett. 89, 171111 (2006).
    [CrossRef]
  10. C.-C. Lin, K.-S. Liu, M.-C. Wu, and H.-P. Shiao, “Low threshold current and high temperature operation of 1.55 μm strain-compensated multiple quantum well AlInAs/AlGaInAs laser diodes,” Electron. Lett. 34, 1667–1668 (1998).
    [CrossRef]
  11. S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010).
    [CrossRef]
  12. L. Hou, M. Haji, R. Dylewicz, P. Stolarz, B. Qiu, E. A. Avrutin, and A. C. Bryce, “160 GHz harmonic mode-locked AlGaInAs 1.55μm strained quantum-well compound-cavity laser,” Opt. Lett. 35, 3991–3993 (2010).
    [CrossRef] [PubMed]
  13. L. Hou, M. Haji, R. Dylewicz, B. Qiu, and A. C. Bryce, “Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology,” IEEE Photon. Technol. Lett. 22, 1039–1041 (2010).
    [CrossRef]
  14. L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs -InP 1.55-μm MQW laser with surface-etched distributed bragg reflector,” IEEE Photon. Technol. Lett. 22, 1503–1505 (2010).
    [CrossRef]
  15. R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009).
    [CrossRef]
  16. H. Schneider and K. v. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1−xAs multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988).
    [CrossRef]
  17. K. Nishimura and M. Usami, “Optical wavelength conversion by electro-absorption modulators,” Active and Passive Optical Components for WDM Communications IV, Proc. SPIE 5595, 234–243 (2004).
  18. J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Pérot lasers,” IEEE J. Quantum Electron. 46, 1023–1030 (2010).
    [CrossRef]
  19. N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
    [CrossRef]

2010 (5)

S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010).
[CrossRef]

L. Hou, M. Haji, R. Dylewicz, B. Qiu, and A. C. Bryce, “Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology,” IEEE Photon. Technol. Lett. 22, 1039–1041 (2010).
[CrossRef]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs -InP 1.55-μm MQW laser with surface-etched distributed bragg reflector,” IEEE Photon. Technol. Lett. 22, 1503–1505 (2010).
[CrossRef]

J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Pérot lasers,” IEEE J. Quantum Electron. 46, 1023–1030 (2010).
[CrossRef]

L. Hou, M. Haji, R. Dylewicz, P. Stolarz, B. Qiu, E. A. Avrutin, and A. C. Bryce, “160 GHz harmonic mode-locked AlGaInAs 1.55μm strained quantum-well compound-cavity laser,” Opt. Lett. 35, 3991–3993 (2010).
[CrossRef] [PubMed]

2009 (2)

R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009).
[CrossRef]

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009).
[CrossRef]

2006 (1)

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett. 89, 171111 (2006).
[CrossRef]

2005 (1)

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11, 278–284 (2005).
[CrossRef]

2004 (3)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
[CrossRef]

N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
[CrossRef]

K. Nishimura and M. Usami, “Optical wavelength conversion by electro-absorption modulators,” Active and Passive Optical Components for WDM Communications IV, Proc. SPIE 5595, 234–243 (2004).

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature (London) 424, 831–838 (2003).
[CrossRef]

2001 (1)

R. Takahashi, “Low-temperature-grown surface-reflection all-optical switch (LOTOS),” Opt. Quantum Electron. 33, 999 (2001).
[CrossRef]

1998 (2)

C.-C. Lin, K.-S. Liu, M.-C. Wu, and H.-P. Shiao, “Low threshold current and high temperature operation of 1.55 μm strain-compensated multiple quantum well AlInAs/AlGaInAs laser diodes,” Electron. Lett. 34, 1667–1668 (1998).
[CrossRef]

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

1994 (1)

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994).
[CrossRef]

1988 (1)

H. Schneider and K. v. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1−xAs multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988).
[CrossRef]

1911 (1)

C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).

Akiba, S.

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11, 278–284 (2005).
[CrossRef]

Allin, D. S.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994).
[CrossRef]

Aubin, G.

N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
[CrossRef]

Avrutin, E. A.

Balle, S.

J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Pérot lasers,” IEEE J. Quantum Electron. 46, 1023–1030 (2010).
[CrossRef]

Beere, H. E.

R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009).
[CrossRef]

Benkelfat, B.

N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
[CrossRef]

Biermann, K.

C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).

Bouché, N.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Bouchoule, S.

N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
[CrossRef]

Bowers, J. E.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994).
[CrossRef]

Bryce, A.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs -InP 1.55-μm MQW laser with surface-etched distributed bragg reflector,” IEEE Photon. Technol. Lett. 22, 1503–1505 (2010).
[CrossRef]

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009).
[CrossRef]

Bryce, A. C.

L. Hou, M. Haji, R. Dylewicz, B. Qiu, and A. C. Bryce, “Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology,” IEEE Photon. Technol. Lett. 22, 1039–1041 (2010).
[CrossRef]

L. Hou, M. Haji, R. Dylewicz, P. Stolarz, B. Qiu, E. A. Avrutin, and A. C. Bryce, “160 GHz harmonic mode-locked AlGaInAs 1.55μm strained quantum-well compound-cavity laser,” Opt. Lett. 35, 3991–3993 (2010).
[CrossRef] [PubMed]

Cannard, P.

S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010).
[CrossRef]

Chen, X.

S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010).
[CrossRef]

Decobert, J.

N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
[CrossRef]

Delpon, E. L.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Derickson, D. J.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994).
[CrossRef]

Dylewicz, R.

L. Hou, M. Haji, R. Dylewicz, B. Qiu, and A. C. Bryce, “Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology,” IEEE Photon. Technol. Lett. 22, 1039–1041 (2010).
[CrossRef]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs -InP 1.55-μm MQW laser with surface-etched distributed bragg reflector,” IEEE Photon. Technol. Lett. 22, 1503–1505 (2010).
[CrossRef]

L. Hou, M. Haji, R. Dylewicz, P. Stolarz, B. Qiu, E. A. Avrutin, and A. C. Bryce, “160 GHz harmonic mode-locked AlGaInAs 1.55μm strained quantum-well compound-cavity laser,” Opt. Lett. 35, 3991–3993 (2010).
[CrossRef] [PubMed]

El Dahdah, N.

N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
[CrossRef]

Gomez-Iglesias, A.

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett. 89, 171111 (2006).
[CrossRef]

Green, R.

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009).
[CrossRef]

Green, R. P.

R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009).
[CrossRef]

Grimm, C. V.-B.

C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).

Haji, M.

L. Hou, M. Haji, R. Dylewicz, P. Stolarz, B. Qiu, E. A. Avrutin, and A. C. Bryce, “160 GHz harmonic mode-locked AlGaInAs 1.55μm strained quantum-well compound-cavity laser,” Opt. Lett. 35, 3991–3993 (2010).
[CrossRef] [PubMed]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs -InP 1.55-μm MQW laser with surface-etched distributed bragg reflector,” IEEE Photon. Technol. Lett. 22, 1503–1505 (2010).
[CrossRef]

L. Hou, M. Haji, R. Dylewicz, B. Qiu, and A. C. Bryce, “Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology,” IEEE Photon. Technol. Lett. 22, 1039–1041 (2010).
[CrossRef]

Helkey, R. J.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994).
[CrossRef]

Helm, M.

C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).

Hou, L.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs -InP 1.55-μm MQW laser with surface-etched distributed bragg reflector,” IEEE Photon. Technol. Lett. 22, 1503–1505 (2010).
[CrossRef]

L. Hou, M. Haji, R. Dylewicz, P. Stolarz, B. Qiu, E. A. Avrutin, and A. C. Bryce, “160 GHz harmonic mode-locked AlGaInAs 1.55μm strained quantum-well compound-cavity laser,” Opt. Lett. 35, 3991–3993 (2010).
[CrossRef] [PubMed]

L. Hou, M. Haji, R. Dylewicz, B. Qiu, and A. C. Bryce, “Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology,” IEEE Photon. Technol. Lett. 22, 1039–1041 (2010).
[CrossRef]

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009).
[CrossRef]

Inohara, R.

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11, 278–284 (2005).
[CrossRef]

Ironside, C.

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009).
[CrossRef]

Javaloyes, J.

J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Pérot lasers,” IEEE J. Quantum Electron. 46, 1023–1030 (2010).
[CrossRef]

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009).
[CrossRef]

Karin, J. R.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994).
[CrossRef]

Kazmierski, C.

N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
[CrossRef]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature (London) 424, 831–838 (2003).
[CrossRef]

Klitzing, K. v.

H. Schneider and K. v. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1−xAs multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988).
[CrossRef]

Künzel, H.

C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).

Lealman, I.

S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010).
[CrossRef]

Lin, C.-C.

C.-C. Lin, K.-S. Liu, M.-C. Wu, and H.-P. Shiao, “Low threshold current and high temperature operation of 1.55 μm strain-compensated multiple quantum well AlInAs/AlGaInAs laser diodes,” Electron. Lett. 34, 1667–1668 (1998).
[CrossRef]

Liu, K.-S.

C.-C. Lin, K.-S. Liu, M.-C. Wu, and H.-P. Shiao, “Low threshold current and high temperature operation of 1.55 μm strain-compensated multiple quantum well AlInAs/AlGaInAs laser diodes,” Electron. Lett. 34, 1667–1668 (1998).
[CrossRef]

Lourtioz, J. M.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Malins, D. B.

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett. 89, 171111 (2006).
[CrossRef]

Marko, I.

S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010).
[CrossRef]

Miller, A.

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett. 89, 171111 (2006).
[CrossRef]

Murdin, B.

R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009).
[CrossRef]

Nagarajan, R.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994).
[CrossRef]

Nishimura, K.

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11, 278–284 (2005).
[CrossRef]

K. Nishimura and M. Usami, “Optical wavelength conversion by electro-absorption modulators,” Active and Passive Optical Components for WDM Communications IV, Proc. SPIE 5595, 234–243 (2004).

Oudar, J. L.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Pidgeon, C.

R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009).
[CrossRef]

Priegnitz, M.

C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).

Qiu, B.

L. Hou, M. Haji, R. Dylewicz, P. Stolarz, B. Qiu, E. A. Avrutin, and A. C. Bryce, “160 GHz harmonic mode-locked AlGaInAs 1.55μm strained quantum-well compound-cavity laser,” Opt. Lett. 35, 3991–3993 (2010).
[CrossRef] [PubMed]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs -InP 1.55-μm MQW laser with surface-etched distributed bragg reflector,” IEEE Photon. Technol. Lett. 22, 1503–1505 (2010).
[CrossRef]

L. Hou, M. Haji, R. Dylewicz, B. Qiu, and A. C. Bryce, “Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology,” IEEE Photon. Technol. Lett. 22, 1039–1041 (2010).
[CrossRef]

Rafailov, E. U.

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett. 89, 171111 (2006).
[CrossRef]

Raj, R.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Ramdane, A.

N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
[CrossRef]

Ritchie, D. A.

R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009).
[CrossRef]

Rivers, L.

S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010).
[CrossRef]

Sayid, S.

S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010).
[CrossRef]

Schneider, H.

H. Schneider and K. v. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1−xAs multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988).
[CrossRef]

C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).

Shen, A.

N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
[CrossRef]

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Shiao, H.-P.

C.-C. Lin, K.-S. Liu, M.-C. Wu, and H.-P. Shiao, “Low threshold current and high temperature operation of 1.55 μm strain-compensated multiple quantum well AlInAs/AlGaInAs laser diodes,” Electron. Lett. 34, 1667–1668 (1998).
[CrossRef]

Sibbett, W.

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett. 89, 171111 (2006).
[CrossRef]

Sorel, M.

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009).
[CrossRef]

Stelmakh, N.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Stolarz, P.

L. Hou, M. Haji, R. Dylewicz, P. Stolarz, B. Qiu, E. A. Avrutin, and A. C. Bryce, “160 GHz harmonic mode-locked AlGaInAs 1.55μm strained quantum-well compound-cavity laser,” Opt. Lett. 35, 3991–3993 (2010).
[CrossRef] [PubMed]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs -InP 1.55-μm MQW laser with surface-etched distributed bragg reflector,” IEEE Photon. Technol. Lett. 22, 1503–1505 (2010).
[CrossRef]

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009).
[CrossRef]

Sweeney, S.

S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010).
[CrossRef]

Takahashi, R.

R. Takahashi, “Low-temperature-grown surface-reflection all-optical switch (LOTOS),” Opt. Quantum Electron. 33, 999 (2001).
[CrossRef]

Thompson, M. G.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
[CrossRef]

Thornton, R. L.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994).
[CrossRef]

Tredicucci, A.

R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009).
[CrossRef]

Usami, M.

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11, 278–284 (2005).
[CrossRef]

K. Nishimura and M. Usami, “Optical wavelength conversion by electro-absorption modulators,” Active and Passive Optical Components for WDM Communications IV, Proc. SPIE 5595, 234–243 (2004).

Vinh, N. Q.

R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009).
[CrossRef]

White, I. H.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
[CrossRef]

White, S. J.

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett. 89, 171111 (2006).
[CrossRef]

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
[CrossRef]

Winnerl, S.

C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).

Wu, M.-C.

C.-C. Lin, K.-S. Liu, M.-C. Wu, and H.-P. Shiao, “Low threshold current and high temperature operation of 1.55 μm strain-compensated multiple quantum well AlInAs/AlGaInAs laser diodes,” Electron. Lett. 34, 1667–1668 (1998).
[CrossRef]

Active and Passive Optical Components for WDM Communications IV, Proc. SPIE (1)

K. Nishimura and M. Usami, “Optical wavelength conversion by electro-absorption modulators,” Active and Passive Optical Components for WDM Communications IV, Proc. SPIE 5595, 234–243 (2004).

Appl. Phys. Lett. (4)

C. V.-B. Grimm, M. Priegnitz, S. Winnerl, H. Schneider, M. Helm, K. Biermann, and H. Künzel, “Intersubband relaxation dynamics in single and double quantum wells based on strained InGaAs/AlAs/AlAsSb,” Appl. Phys. Lett. 91, 191121 (2007).

D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett. 89, 171111 (2006).
[CrossRef]

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64, 676–678 (1994).
[CrossRef]

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Electron. Lett. (1)

C.-C. Lin, K.-S. Liu, M.-C. Wu, and H.-P. Shiao, “Low threshold current and high temperature operation of 1.55 μm strain-compensated multiple quantum well AlInAs/AlGaInAs laser diodes,” Electron. Lett. 34, 1667–1668 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Sayid, I. Marko, P. Cannard, X. Chen, L. Rivers, I. Lealman, and S. Sweeney, “Thermal characteristics of 1.55 μm InGaAlAs quantum well buried heterostructure lasers,” IEEE J. Quantum Electron. 46, 700–705 (2010).
[CrossRef]

J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Pérot lasers,” IEEE J. Quantum Electron. 46, 1023–1030 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11, 278–284 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. Ironside, M. Sorel, and A. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55μm strained quantum-well laser,” IEEE Photon. Technol. Lett. 21, 1731–1733 (2009).
[CrossRef]

N. El Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B. Benkelfat, and A. Ramdane, “New design of InGaAs-InGaAlAs MQW electroabsorption modulator for high speed all-optical wavelength conversion” IEEE Photon. Technol. Lett. 16, 2302–2304 (2004).
[CrossRef]

L. Hou, M. Haji, R. Dylewicz, B. Qiu, and A. C. Bryce, “Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology,” IEEE Photon. Technol. Lett. 22, 1039–1041 (2010).
[CrossRef]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs -InP 1.55-μm MQW laser with surface-etched distributed bragg reflector,” IEEE Photon. Technol. Lett. 22, 1503–1505 (2010).
[CrossRef]

N. J. Phys. (1)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
[CrossRef]

Nature (London) (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature (London) 424, 831–838 (2003).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

R. Takahashi, “Low-temperature-grown surface-reflection all-optical switch (LOTOS),” Opt. Quantum Electron. 33, 999 (2001).
[CrossRef]

Phys. Rev. B (2)

R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, “Gain recovery dynamics of a terahertz quantum cascade laser,” Phys. Rev. B 80, 075303 (2009).
[CrossRef]

H. Schneider and K. v. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1−xAs multiple-quantum-well structure,” Phys. Rev. B 38, 6160–6165 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the photocurrent detected pump-probe setup used to measure τa (b) Symbols show the measured absorption recovery times τa , as a function of the applied bias. The error bars represent the standard deviation of a number of measurements under the same conditions. The blue line shows the values of τa calculated using Eq. (1). (c) Typical trace of photocurrent versus delay line position. (d) The absorption recovery rate γa plotted on a log scale versus applied bias. The blue line shows the rate calculated using Eq. (1).

Fig. 2
Fig. 2

(a) Schematic diagram of the setup used for the wavelength conversion measurements. (b) (Top trace) λ ∼ 1550nm input pulses used for the experiment. This trace is not to scale and has been offset in the vertical direction for clarity. (Other traces) λ ∼ 1570nm output traces obtained from sample A under bias conditions from 0 to 3.5V, in 0.5V steps (from top to bottom) (c) The extinction ration and peak output powers obtained from sample B as a function of applied bias.

Fig. 3
Fig. 3

(a) The black curve shows values of the absorption recovery time τa obtained by fitting the wavelength converted signal to a single exponential function. The symbols denote different wavelengths used for the CW beam: ■ 1546.5nm, ● 1547.2nm, ▲ 1548.4nm, ♦ 1549.4nm. The blue open symbols and line show the values of τa measured from using the photocurrent detected pump-probe technique. The grey line shows values of τa reported by Nishimura et al. for InGaAsP MQWs [17]. The top axis shows electric field values calculated for the devices investigated in this work, and does not apply to the the Nishimura et al. data. (b) The measured FWHM of the wavelength converted pulses. Symbols have the same meaning as those in panel (a). (c) Reflection spectra of sample C measured under applied biases from 0V to 4V, at 1V intervals, showing the residual Fabry-Pérot resonances. The Stark shift of the absorption edge with increasing voltage can also be clearly seen.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ a = 2 π m * L w 2 k B T exp ( E b L w e ( V + V b i ) 2 d k B T )

Metrics