Abstract

Self-phase modulation (SPM) effect is analyzed in a dispersion-compensated transmission using optical BPSK single sideband (SSB) modulation. The effect was evaluated numerically using both waveform degradation and spectral degradation, clarifying that waveform degradation is induced dominantly by peak power of the quadrature component of a Hilbert-transformed signal. Eye-opening degradation of BPSK-SSB is induced by lower fiber input power than the conventional double sideband (DSB) case because the SSB-homodyne system is sensitive to phase error resulting from SPM. Spectral degradation from SPM has two phases with increasing fiber input power. In the first phase, the sideband in the suppressive frequency region expands with increasing optical power. In the second phase, the spectral envelope in the non-suppressive frequency region becomes broad, and its shape is somewhat varied.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds., High Spectral Density Optical Communication Technologies (Springer-Verlag, 2010).
  2. Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbits/s (8 × 40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” in Technical Digest of Topical Meeting on Optical Amplifiers and Their Applications (1999), paper PDP4.
  3. T. Ono, Y. Yano, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “Characteristics of optical duobinary signals in terabit/s capacity, high-spectral efficiency WDM systems,” J. Lightwave Technol. 16(5), 788–797 (1998).
    [CrossRef]
  4. A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Technical Digest of the Conference on Optical Fiber Communication (2006), Postdeadline paper PDP39.
  5. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic, 2010).
  6. B. P. Lathi, Communication Systems (John Wiley & Sons, 1968).
  7. K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
    [CrossRef]
  8. W. Idler, S. Bigo, Y. Frignac, B. Franz, and G. Veith, “Vestigial side band demultiplexing for ultra high capacity (0.64 bit/s/Hz) transmission of 128 × 40 Gb/s channels,” in Technical Digest of the Conference on Optical Fiber Communication (2001), paper MM3.
  9. T. Tsuritani, A. Agata, I. Morita, K. Tanaka, and N. Edagawa, “Performance comparison between DSB and VSB signals in 20 Gbit/s-based ultra-long-haul WDM systems,” in Technical Digest of the Conference on Optical Fiber Communication (2001), paper MM5.
  10. M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightwave Technol. 17(10), 1742–1749 (1999).
    [CrossRef]
  11. B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10(4), 600–602 (1998).
    [CrossRef]
  12. S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
    [CrossRef]
  13. K. Higuma, Y. Hashimoto, H. Nagata, S. Oikawa, and M. Izutsu, “X-cut LiNbO3 optical SSB modulators,” in Technical Digest of CLEO Pacific Rim (2001), paper ME2–4.
  14. K. Takano, Y. Naganuma, and K. Nakagawa, “Performance analysis of optical single sideband modulation based on Mach–Zehnder interferometers and its dispersive fiber transmission,” IEICE Trans. Commun. 88-B, 555–564 (2005).
  15. K. Takano, N. Sakamoto, and K. Nakagawa, “SPM effect on carrier-suppressed optical SSB transmission with NRZ and RZ formats,” Electron. Lett. 40(18), 1150–1151 (2004).
    [CrossRef]
  16. K. Takano, T. Murakami, and K. Nakagawa, “Mitigation of SPM effect by using Manchester code on optical BPSK-SSB transmission,” in Technical Digest of the Conference on Optical Fiber Communication (2006), paper OTuK2.
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  18. S. L. Hahn, Hilbert Transforms in Signal Processing (Artech House, 1996).
  19. G. Keiser, Optical Fiber Communications 3rd ed. (McGraw Hill, 2000).

2005 (1)

K. Takano, Y. Naganuma, and K. Nakagawa, “Performance analysis of optical single sideband modulation based on Mach–Zehnder interferometers and its dispersive fiber transmission,” IEICE Trans. Commun. 88-B, 555–564 (2005).

2004 (1)

K. Takano, N. Sakamoto, and K. Nakagawa, “SPM effect on carrier-suppressed optical SSB transmission with NRZ and RZ formats,” Electron. Lett. 40(18), 1150–1151 (2004).
[CrossRef]

2001 (1)

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[CrossRef]

1999 (1)

1998 (2)

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10(4), 600–602 (1998).
[CrossRef]

T. Ono, Y. Yano, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, “Characteristics of optical duobinary signals in terabit/s capacity, high-spectral efficiency WDM systems,” J. Lightwave Technol. 16(5), 788–797 (1998).
[CrossRef]

1993 (1)

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[CrossRef]

Conradi, J.

M. Sieben, J. Conradi, and D. E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation,” J. Lightwave Technol. 17(10), 1742–1749 (1999).
[CrossRef]

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10(4), 600–602 (1998).
[CrossRef]

Davies, B.

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10(4), 600–602 (1998).
[CrossRef]

Dodds, D. E.

Emura, K.

Fukuchi, K.

Ito, T.

Izutsu, M.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[CrossRef]

Kawanishi, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[CrossRef]

Kubodera, K.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[CrossRef]

Mitsugi, N.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[CrossRef]

Naganuma, Y.

K. Takano, Y. Naganuma, and K. Nakagawa, “Performance analysis of optical single sideband modulation based on Mach–Zehnder interferometers and its dispersive fiber transmission,” IEICE Trans. Commun. 88-B, 555–564 (2005).

Nakagawa, K.

K. Takano, Y. Naganuma, and K. Nakagawa, “Performance analysis of optical single sideband modulation based on Mach–Zehnder interferometers and its dispersive fiber transmission,” IEICE Trans. Commun. 88-B, 555–564 (2005).

K. Takano, N. Sakamoto, and K. Nakagawa, “SPM effect on carrier-suppressed optical SSB transmission with NRZ and RZ formats,” Electron. Lett. 40(18), 1150–1151 (2004).
[CrossRef]

Oikawa, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[CrossRef]

Ono, T.

Saitou, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[CrossRef]

Sakamoto, N.

K. Takano, N. Sakamoto, and K. Nakagawa, “SPM effect on carrier-suppressed optical SSB transmission with NRZ and RZ formats,” Electron. Lett. 40(18), 1150–1151 (2004).
[CrossRef]

Shimotsu, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[CrossRef]

Sieben, M.

Takachio, N.

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[CrossRef]

Takano, K.

K. Takano, Y. Naganuma, and K. Nakagawa, “Performance analysis of optical single sideband modulation based on Mach–Zehnder interferometers and its dispersive fiber transmission,” IEICE Trans. Commun. 88-B, 555–564 (2005).

K. Takano, N. Sakamoto, and K. Nakagawa, “SPM effect on carrier-suppressed optical SSB transmission with NRZ and RZ formats,” Electron. Lett. 40(18), 1150–1151 (2004).
[CrossRef]

Yamaguchi, M.

Yamazaki, H.

Yano, Y.

Yonenaga, K.

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[CrossRef]

Electron. Lett. (1)

K. Takano, N. Sakamoto, and K. Nakagawa, “SPM effect on carrier-suppressed optical SSB transmission with NRZ and RZ formats,” Electron. Lett. 40(18), 1150–1151 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

B. Davies and J. Conradi, “Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband,” IEEE Photon. Technol. Lett. 10(4), 600–602 (1998).
[CrossRef]

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett. 13(4), 364–366 (2001).
[CrossRef]

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[CrossRef]

IEICE Trans. Commun. (1)

K. Takano, Y. Naganuma, and K. Nakagawa, “Performance analysis of optical single sideband modulation based on Mach–Zehnder interferometers and its dispersive fiber transmission,” IEICE Trans. Commun. 88-B, 555–564 (2005).

J. Lightwave Technol. (2)

Other (12)

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Technical Digest of the Conference on Optical Fiber Communication (2006), Postdeadline paper PDP39.

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic, 2010).

B. P. Lathi, Communication Systems (John Wiley & Sons, 1968).

W. Idler, S. Bigo, Y. Frignac, B. Franz, and G. Veith, “Vestigial side band demultiplexing for ultra high capacity (0.64 bit/s/Hz) transmission of 128 × 40 Gb/s channels,” in Technical Digest of the Conference on Optical Fiber Communication (2001), paper MM3.

T. Tsuritani, A. Agata, I. Morita, K. Tanaka, and N. Edagawa, “Performance comparison between DSB and VSB signals in 20 Gbit/s-based ultra-long-haul WDM systems,” in Technical Digest of the Conference on Optical Fiber Communication (2001), paper MM5.

M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds., High Spectral Density Optical Communication Technologies (Springer-Verlag, 2010).

Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, “320 Gbits/s (8 × 40 Gbit/s) WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to-zero pulse format,” in Technical Digest of Topical Meeting on Optical Amplifiers and Their Applications (1999), paper PDP4.

K. Higuma, Y. Hashimoto, H. Nagata, S. Oikawa, and M. Izutsu, “X-cut LiNbO3 optical SSB modulators,” in Technical Digest of CLEO Pacific Rim (2001), paper ME2–4.

K. Takano, T. Murakami, and K. Nakagawa, “Mitigation of SPM effect by using Manchester code on optical BPSK-SSB transmission,” in Technical Digest of the Conference on Optical Fiber Communication (2006), paper OTuK2.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

S. L. Hahn, Hilbert Transforms in Signal Processing (Artech House, 1996).

G. Keiser, Optical Fiber Communications 3rd ed. (McGraw Hill, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of BPSK-SSB modulation and simulated fiber transmission setup. SMF, standard single mode fiber; DCF, dispersion compensation fiber; LD, optical carrier source; PD, photograph diode; LO, optical local oscillator.

Fig. 2
Fig. 2

Eye diagrams of homodyne detected signal after fiber transmission (SMF 100 km, DCF 21.3 km).

Fig. 3
Fig. 3

Waveform of NRZ BPSK-SSB signal with averaged fiber input power of + 8 dBm (PN: 7): (a) detected base-band signal at the receiver; (b) optical quadrature component at the modulator; (c) base-band signal driving modulator.

Fig. 4
Fig. 4

Eye opening penalty as a function of the averaged fiber input power in NRZ coded optical BPSK-SSB fiber transmission.

Fig. 5
Fig. 5

Optical power spectra of NRZ-coded SSB signal, with changing fiber input power, normalized by the total power: black line, receiver input; gray line, transmitter output.

Fig. 6
Fig. 6

Optical power spectra of intensity modulation as an example of double sideband (DSB) case, with changing fiber input power, normalized by the total power: black line, receiver input; gray line, transmitter output.

Fig. 7
Fig. 7

Optical Manchester code compared with NRZ.

Fig. 8
Fig. 8

Eye opening penalty as a function of the averaged fiber input power in RZ/Manchester coded optical BPSK-SSB fiber transmission.

Fig. 9
Fig. 9

Optical power spectra of Manchester-coded SSB signal, with changing the fiber input power, normalized by the total power: black line, receiver input; gray line, transmitter output; B, data rate.

Fig. 10
Fig. 10

Optical power spectra of RZ-coded SSB signal, with changing the fiber input power, normalized by the total power: black line, receiver input; gray line, transmitter output; B, data rate.

Tables (1)

Tables Icon

Table 1 Fiber Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E P = E r ( α S M F L S M F × α D C F L D C F ) E t ,
i ( t ) d ( t ) cos [ φ ( t ) ] d H ( t ) sin [ φ ( t ) ]                + (DC components) + (Harmonics),

Metrics