Abstract

A novel tunable fiber Fabry-Perot (FP) filter is proposed and demonstrated by using a hollow-core photonic bandgap fiber (HC-PBF) and a micro-fiber. The interference cavity is a hollow core of HC-PBF. One of the reflection mirrors is the splicing point between a section of HC-PBF and a single mode fiber. The other reflection mirror is a gold-coated end of micro-fiber that uses chemical etching process to obtain the similar diameter as the core of HC-PBF. Hence the movable mirror can be adjusted with long distance inside the hollow core of HC-PBF. Tunable FP filter is used as a mode selecting component in the reflection mode to implement stable single longitudinal mode (SLM) operation in a ring laser. With FP cavity length of 0.25 ± 0.14 mm, the wavelength of SLM laser can be tuned over 1554-1562 nm with a tuning step of 0.2-0.3 nm, a side-mode suppression ratio (SMSR) of 32-36 dB and a linewidth of 3.0-5.1 kHz. With FP cavity length of 2.37 ± 0.37 mm, the SLM laser can be tuned over 1557.3-1560.2 nm with a tuning step of 0.06-0.1 nm, a SMSR of 44-51 dB and a linewidth of 1.8-3.0 kHz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor, “Fiber optic Fabry-Perot sensors,” in Fiber Optic Sensors, F. T. Y. Yu, ed., Marcel Dekker, New York, 41–74 (2002).
  2. H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15(4), 647–653 (1997).
    [CrossRef]
  3. Y. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
    [CrossRef]
  4. T. K. Gangopadhyay and P. J. Henderson, “Vibration: history and measurement with an extrinsic Fabry-Perot sensor with solid-state laser interferometry,” Appl. Opt. 38(12), 2471–2477 (1999).
    [CrossRef]
  5. Z. Huang, Y. Zhu, X. Chen, and A. B. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17(11), 2403–2405 (2005).
    [CrossRef]
  6. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
    [CrossRef] [PubMed]
  7. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett. 32(18), 2662–2664 (2007).
    [CrossRef] [PubMed]
  8. Y. J. Rao, M. Deng, T. Zhu, and H. Li, “In-Line Fabry–Perot Etalons Based on Hollow-Core Photonic Bandgap Fibers for High-Temperature Applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009).
    [CrossRef]
  9. X. W. Wang, J. Ch. Xu, Zh. Wang, K. L. Cooper, and A. B. Wang, “Intrinsic Fabry-Perot interferometer with a micrometric tip for biomedical applications,” in Proceedings of the IEEE 32nd Annual Northeast on Bioengineering Conference 2006, 55–56 (2006).
  10. C. C. Lee, Y. K. Chen, and S. K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Opt. Lett. 23(5), 358–360 (1998).
    [CrossRef]
  11. C. H. Yeh, T. T. Huang, H. C. Chien, C. H. Ko, and S. Chi, “Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation,” Opt. Express 15(2), 382–386 (2007).
    [CrossRef] [PubMed]
  12. S. L. Pan and J. P. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability,” IEEE Photon. Technol. Lett. 22(6), 413–415 (2010).
    [CrossRef]
  13. Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and W. J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
    [CrossRef]
  14. J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
    [CrossRef]
  15. K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser,” Opt. Express 16(18), 14173–14179 (2008).
    [CrossRef] [PubMed]
  16. M. Tang, X. Tian, X. Lu, S. Fu, P. P. Shum, Z. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
    [CrossRef] [PubMed]
  17. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
    [CrossRef]
  18. D. Chen, H. Fu, and W. Liu, “Single-longitudinal-mode erbium-doped fiber laser based on a fiber Bragg grating Fabry-Perot filter,” Laser Phys. 17(10), 1246–1248 (2007).
    [CrossRef]
  19. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32(2), 115–117 (2007).
    [CrossRef]
  20. Datasheet of HC-1550, http://www.nktphotonics.com/files/files/HC-1550-02-100409.pdf .
  21. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, New Jersey, 1998).

2010

S. L. Pan and J. P. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability,” IEEE Photon. Technol. Lett. 22(6), 413–415 (2010).
[CrossRef]

2009

2008

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser,” Opt. Express 16(18), 14173–14179 (2008).
[CrossRef] [PubMed]

2007

2005

Y. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

Z. Huang, Y. Zhu, X. Chen, and A. B. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17(11), 2403–2405 (2005).
[CrossRef]

2004

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

2001

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and W. J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

1999

1998

1997

H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15(4), 647–653 (1997).
[CrossRef]

Badenes, G.

Chen, D.

D. Chen, H. Fu, and W. Liu, “Single-longitudinal-mode erbium-doped fiber laser based on a fiber Bragg grating Fabry-Perot filter,” Laser Phys. 17(10), 1246–1248 (2007).
[CrossRef]

Chen, X.

Z. Huang, Y. Zhu, X. Chen, and A. B. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17(11), 2403–2405 (2005).
[CrossRef]

Chen, Y. K.

Cheng, X. P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Cheng, Y.

Chi, S.

Chien, H. C.

Demokan, M. S.

Deng, M.

Duan, D. W.

Feinberg, W. J.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and W. J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Fu, H.

D. Chen, H. Fu, and W. Liu, “Single-longitudinal-mode erbium-doped fiber laser based on a fiber Bragg grating Fabry-Perot filter,” Laser Phys. 17(10), 1246–1248 (2007).
[CrossRef]

Fu, S.

Gangopadhyay, T. K.

Havstad, S. A.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and W. J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Henderson, P. J.

Huang, T. T.

Huang, Z.

Z. Huang, Y. Zhu, X. Chen, and A. B. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17(11), 2403–2405 (2005).
[CrossRef]

Jha, R.

Jin, W.

Kang, J. U.

Ko, C. H.

Lee, C. C.

Li, H.

Liaw, S. K.

Liu, J.

Liu, M.

Liu, W.

D. Chen, H. Fu, and W. Liu, “Single-longitudinal-mode erbium-doped fiber laser based on a fiber Bragg grating Fabry-Perot filter,” Laser Phys. 17(10), 1246–1248 (2007).
[CrossRef]

Lu, X.

Pan, S. L.

S. L. Pan and J. P. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability,” IEEE Photon. Technol. Lett. 22(6), 413–415 (2010).
[CrossRef]

Pruneri, V.

Rao, Y. J.

Shum, P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Shum, P. P.

Singh, H.

H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15(4), 647–653 (1997).
[CrossRef]

Sirkis, J. S.

H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15(4), 647–653 (1997).
[CrossRef]

Song, Y. W.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and W. J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Starodubov, D.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and W. J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Tan, W. C.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Tang, M.

M. Tang, X. Tian, X. Lu, S. Fu, P. P. Shum, Z. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009).
[CrossRef] [PubMed]

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Tian, X.

Tse, C. H.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Villatoro, J.

Wang, A. B.

Y. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

Z. Huang, Y. Zhu, X. Chen, and A. B. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17(11), 2403–2405 (2005).
[CrossRef]

Willner, A. E.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and W. J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Wu, R. F.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Xiao, L.

Xie, Y.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and W. J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Yang, X. C.

Yao, J.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Yao, J. P.

S. L. Pan and J. P. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability,” IEEE Photon. Technol. Lett. 22(6), 413–415 (2010).
[CrossRef]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Yeap, T. H.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Yeh, C. H.

Zhang, J.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Zhang, K.

Zhang, Z.

Zhou, J. L.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Zhu, T.

Zhu, Y.

Y. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

Z. Huang, Y. Zhu, X. Chen, and A. B. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17(11), 2403–2405 (2005).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

Z. Huang, Y. Zhu, X. Chen, and A. B. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17(11), 2403–2405 (2005).
[CrossRef]

S. L. Pan and J. P. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability,” IEEE Photon. Technol. Lett. 22(6), 413–415 (2010).
[CrossRef]

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and W. J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber laser based on high finesse fiber Bragg grating Fabry-Perot Etalon,” IEEE Photon. Technol. Lett. 20(12), 976–978 (2008).
[CrossRef]

Y. Zhu and A. B. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
[CrossRef]

J. Lightwave Technol.

H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15(4), 647–653 (1997).
[CrossRef]

Y. J. Rao, M. Deng, T. Zhu, and H. Li, “In-Line Fabry–Perot Etalons Based on Hollow-Core Photonic Bandgap Fibers for High-Temperature Applications,” J. Lightwave Technol. 27(19), 4360–4365 (2009).
[CrossRef]

Laser Phys.

D. Chen, H. Fu, and W. Liu, “Single-longitudinal-mode erbium-doped fiber laser based on a fiber Bragg grating Fabry-Perot filter,” Laser Phys. 17(10), 1246–1248 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

X. W. Wang, J. Ch. Xu, Zh. Wang, K. L. Cooper, and A. B. Wang, “Intrinsic Fabry-Perot interferometer with a micrometric tip for biomedical applications,” in Proceedings of the IEEE 32nd Annual Northeast on Bioengineering Conference 2006, 55–56 (2006).

H. F. Taylor, “Fiber optic Fabry-Perot sensors,” in Fiber Optic Sensors, F. T. Y. Yu, ed., Marcel Dekker, New York, 41–74 (2002).

Datasheet of HC-1550, http://www.nktphotonics.com/files/files/HC-1550-02-100409.pdf .

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, New Jersey, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Configuration of an FP filter based on HC-PBF and micro-fiber. D SMF: diameter of SMF, D PBF: diameter of HC-PBF, L m: the length of HC-PBF, L: the cavity length, : the length of the micro-fiber, d: diameter of the micro-fiber. (b) Cross section of HC-1550. (c) Microscope image of a splicing point between SMF and HC-1550. (d) Microscope image of a HC-1550 with an inserted micro-fiber.

Fig. 2
Fig. 2

Schematic setup of a tunable ring laser incorporating the novel FP filter. C1: 99:1 coupler; C2, C3: 3 dB coupler.

Fig. 3
Fig. 3

The reflection spectra of an FP filter (a) without and (b) with gold coating, respectively. When the cavity length L = 0.36 mm, 0.67 mm, 1.23 mm and 2.57 mm, FSR = 3.22 nm, 1.72 nm, 0.94 nm and 0.45 nm, respectively.

Fig. 4
Fig. 4

(a) Tuning characteristics with cavity length L = 0.25±0.14 mm and pump current I EDF = 400mA. (b) Tuning characteristics with cavity length L = 2.37±0.37 mm and pump current I EDF = 400mA.

Fig. 5
Fig. 5

(a) Electrical spectra measurement of SLM-EDFRL with FP cavity lengths of L = 0.36 mm and L = 2.51 mm. The inset shows the electrical spectra of the beating signal of the main EDFRL cavity without FP filter. (b) 3dB linewidth measurement by ESA.

Fig. 6
Fig. 6

(a) SMSR (solid line) and linewidth (dash line) measurement when the pump increases from the threshold value to 500mA. (b) Electrical spectra measurement of SLM-EDFRL with FP cavity lengths of L = 2.51 mm and I EDF = 111 mA, 250 mA and 500 mA, respectively.

Tables (1)

Tables Icon

Table 1 Laser characteristics

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F S R = λ 2 2 n L
I R = | E R E i | 2 = | R 1 + ( 1 α 1 ) ( 1 R 1 ) ( R 2 η ) 1 2 e j ϕ + ( 1 α 1 ) ( 1 R 1 ) ( R 1 η ) 1 2 R 2 η e j 2 ϕ | 2 = R 1 + ( 1 α 1 ) 2 ( 1 R 1 ) 2 R 2 η 2 ( 1 α 1 ) ( 1 R 1 ) R 1 R 2 η 3 2 + 2 [ ( 1 α 1 ) ( 1 R 1 ) ( R 1 R 2 η ) 1 2 + ( 1 α 1 ) 2 ( 1 R 1 ) 2 ( R 1 ) 1 2 R 2 3 2 η 2 ] cos 2 ϕ + 4 ( 1 α 1 ) ( 1 R 1 ) R 1 R 2 η 3 2 cos 2 2 ϕ
R 1 = ( n H C P B F n S M F n H C P B F + n S M F ) 2
ϕ = 2 π n L λ
V = I R max I R min I R max + I R min
V = 2 ( 1 α 1 ) ( 1 R 1 ) ( R 1 R 2 ) 1 2 [ η 1 2 + ( 1 α 1 ) ( 1 R 1 ) R 2 η 2 ] R 1 + ( 1 α 1 ) 2 ( 1 R 1 ) 2 R 2 η + 2 ( 1 α 1 ) ( 1 R 1 ) R 1 R 2 η 3 2
V η = 2 ( 1 α 1 ) ( 1 R 1 ) ( R 1 R 2 ) 1 2 [ 1 2 R 1 η 1 2 + ( 1 α 1 ) 3 ( 1 R 1 ) 3 R 2 2 η 2 + ( 1 α 1 ) 2 ( 1 R 1 ) 2 R 1 R 2 2 η 5 2 1 2 ( 1 α 1 ) 2 ( 1 R 1 ) 2 R 2 η 1 2 ] [ R 1 + ( 1 α 1 ) 2 ( 1 R 1 ) 2 R 2 η + 2 ( 1 α 1 ) ( 1 R 1 ) R 1 R 2 η 3 2 ] 2

Metrics