Abstract

We investigate the optical properties of a true three-dimensional metamaterial that was fabricated using a self-assembly bottom-up technology. The metamaterial consists of closely packed spherical clusters being formed by a large number of non-touching gold nanoparticles. After presenting experimental results, we apply a generalized Mie theory to analyze its spectral response revealing that it is dominated by a magnetic dipole contribution. By using an effective medium theory we show that the fabricated metamaterial exhibits a dispersive effective permeability, i.e. artificial magnetism. Although this metamaterial is not yet left-handed it might serve as a starting point for achieving bulk metamaterials by using bottom-up approaches.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  2. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31–37 (2008).
    [CrossRef]
  3. T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B 79, 115430 (2009).
    [CrossRef]
  4. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
    [CrossRef]
  5. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
    [CrossRef] [PubMed]
  6. C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
    [CrossRef]
  7. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
    [CrossRef] [PubMed]
  8. C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79, 045111 (2009).
    [CrossRef]
  9. A. Vallecchi, M. Albani, and F. Capolino, “Collective electric and magnetic plasmonic resonances in spherical nanoclusters,” Opt. Express 19, 2754–2772 (2011).
    [CrossRef] [PubMed]
  10. V. Yannopapas, “Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: a theoretical study,” J. Phys.: Condens. Matter 20, 255201 (2008).
    [CrossRef]
  11. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
    [CrossRef]
  12. M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009).
    [CrossRef]
  13. V. Yannopapas, “Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies,” Appl. Phys. A 87, 259–264 (2007).
    [CrossRef]
  14. V. A. Tamma, J.-H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt. 49, A11–A17 (2010).
    [CrossRef] [PubMed]
  15. J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, “Block copolymer nanolithography: translation of molecular level control to nanoscale patterns,” Adv. Mater. 21, 4769–4792 (2009).
    [CrossRef]
  16. H. Fan, “Nanocrystal-micelle: synthesis, self-assembly and application,” Chem. Commun. , 1383–1394 (2008).
    [CrossRef]
  17. S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
    [CrossRef]
  18. P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns,” Nature 440, 297–302 (2006).
    [CrossRef] [PubMed]
  19. C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
    [CrossRef]
  20. V. Yannopapas, “Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres,” Phys. Rev. B 75, 035112 (2007).
    [CrossRef]
  21. N. Shalkevich, A. Shalkevich, L. Si-Ahmed, and T. Bürgi, “Reversible formation of gold nanoparticle–surfactant composite assemblies for the preparation of concentrated colloidal solutions,” Phys. Chem. Chem. Phys. 11, 10175–10179 (2009).
    [CrossRef] [PubMed]
  22. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature (London), Phys. Sci. 241, 20–22 (1973).
  23. Y.-l. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995).
    [CrossRef] [PubMed]
  24. S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three–dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
    [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  26. T. Okamoto, “Near-field spectral analysis of metallic beads,” in Near-Field Optics and Surface Plasmon Polaritons , S. Kawata, ed. (Springer, 2001), pp. 97–123.
    [CrossRef]
  27. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
    [CrossRef]
  28. J. D. Jackson, “Radiating systems, multipole fields and radiation,” in Classical Electrodynamics , 3rd ed. (Wiley, 1999), pp. 407–455.
  29. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
  30. H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
    [CrossRef]

2011

2010

V. A. Tamma, J.-H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt. 49, A11–A17 (2010).
[CrossRef] [PubMed]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three–dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

2009

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

N. Shalkevich, A. Shalkevich, L. Si-Ahmed, and T. Bürgi, “Reversible formation of gold nanoparticle–surfactant composite assemblies for the preparation of concentrated colloidal solutions,” Phys. Chem. Chem. Phys. 11, 10175–10179 (2009).
[CrossRef] [PubMed]

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B 79, 115430 (2009).
[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79, 045111 (2009).
[CrossRef]

J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, “Block copolymer nanolithography: translation of molecular level control to nanoscale patterns,” Adv. Mater. 21, 4769–4792 (2009).
[CrossRef]

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009).
[CrossRef]

2008

V. Yannopapas, “Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: a theoretical study,” J. Phys.: Condens. Matter 20, 255201 (2008).
[CrossRef]

H. Fan, “Nanocrystal-micelle: synthesis, self-assembly and application,” Chem. Commun. , 1383–1394 (2008).
[CrossRef]

S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
[CrossRef]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31–37 (2008).
[CrossRef]

2007

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

V. Yannopapas, “Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies,” Appl. Phys. A 87, 259–264 (2007).
[CrossRef]

V. Yannopapas, “Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres,” Phys. Rev. B 75, 035112 (2007).
[CrossRef]

2006

P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns,” Nature 440, 297–302 (2006).
[CrossRef] [PubMed]

2005

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

1995

1973

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature (London), Phys. Sci. 241, 20–22 (1973).

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1953

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Aitchison, J. S.

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009).
[CrossRef]

Albani, M.

An, D.-L.

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Bang, J.

J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, “Block copolymer nanolithography: translation of molecular level control to nanoscale patterns,” Adv. Mater. 21, 4769–4792 (2009).
[CrossRef]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Barberá, J.

S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
[CrossRef]

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Boudon, J.

S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
[CrossRef]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Bürgi, T.

N. Shalkevich, A. Shalkevich, L. Si-Ahmed, and T. Bürgi, “Reversible formation of gold nanoparticle–surfactant composite assemblies for the preparation of concentrated colloidal solutions,” Phys. Chem. Chem. Phys. 11, 10175–10179 (2009).
[CrossRef] [PubMed]

S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
[CrossRef]

Capasso, F.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Capolino, F.

Chen, J. I. L.

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009).
[CrossRef]

Chen, Q.

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Deschenaux, R.

S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
[CrossRef]

Diduszko, R.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Etrich, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Fan, H.

H. Fan, “Nanocrystal-micelle: synthesis, self-assembly and application,” Chem. Commun. , 1383–1394 (2008).
[CrossRef]

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Frein, S.

S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
[CrossRef]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature (London), Phys. Sci. 241, 20–22 (1973).

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31–37 (2008).
[CrossRef]

Gajc, M.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31–37 (2008).
[CrossRef]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31–37 (2008).
[CrossRef]

Halas, N. J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Hawker, C. J.

J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, “Block copolymer nanolithography: translation of molecular level control to nanoscale patterns,” Adv. Mater. 21, 4769–4792 (2009).
[CrossRef]

Helgert, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Jackson, J. D.

J. D. Jackson, “Radiating systems, multipole fields and radiation,” in Classical Electrodynamics , 3rd ed. (Wiley, 1999), pp. 407–455.

Jeong, U.

J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, “Block copolymer nanolithography: translation of molecular level control to nanoscale patterns,” Adv. Mater. 21, 4769–4792 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31–37 (2008).
[CrossRef]

Kley, E.-B.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Kolodziejak, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Lederer, F.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three–dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B 79, 115430 (2009).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Lee, J.-H.

Lim, S. I.

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31–37 (2008).
[CrossRef]

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Menzel, C.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B 79, 115430 (2009).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Mojahedi, M.

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009).
[CrossRef]

Moroz, A.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

Mott, D.

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

Mühlig, S.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three–dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

Nordlander, P.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto, “Near-field spectral analysis of metallic beads,” in Near-Field Optics and Surface Plasmon Polaritons , S. Kawata, ed. (Springer, 2001), pp. 97–123.
[CrossRef]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Ozin, G. A.

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009).
[CrossRef]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Park, W.

Paul, T.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B 79, 115430 (2009).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Pawlak, D. A.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Pertsch, T.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Pniewski, J.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three–dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Rockstuhl, C.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three–dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B 79, 115430 (2009).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Rothemund, P. W. K.

P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns,” Nature 440, 297–302 (2006).
[CrossRef] [PubMed]

Rozniatowski, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Russell, T. P.

J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, “Block copolymer nanolithography: translation of molecular level control to nanoscale patterns,” Adv. Mater. 21, 4769–4792 (2009).
[CrossRef]

Ryu, D. Y.

J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, “Block copolymer nanolithography: translation of molecular level control to nanoscale patterns,” Adv. Mater. 21, 4769–4792 (2009).
[CrossRef]

Scharf, T.

S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31–37 (2008).
[CrossRef]

Shalkevich, A.

N. Shalkevich, A. Shalkevich, L. Si-Ahmed, and T. Bürgi, “Reversible formation of gold nanoparticle–surfactant composite assemblies for the preparation of concentrated colloidal solutions,” Phys. Chem. Chem. Phys. 11, 10175–10179 (2009).
[CrossRef] [PubMed]

Shalkevich, N.

N. Shalkevich, A. Shalkevich, L. Si-Ahmed, and T. Bürgi, “Reversible formation of gold nanoparticle–surfactant composite assemblies for the preparation of concentrated colloidal solutions,” Phys. Chem. Chem. Phys. 11, 10175–10179 (2009).
[CrossRef] [PubMed]

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Si-Ahmed, L.

N. Shalkevich, A. Shalkevich, L. Si-Ahmed, and T. Bürgi, “Reversible formation of gold nanoparticle–surfactant composite assemblies for the preparation of concentrated colloidal solutions,” Phys. Chem. Chem. Phys. 11, 10175–10179 (2009).
[CrossRef] [PubMed]

Simovski, C. R.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three–dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79, 045111 (2009).
[CrossRef]

Smalc, J.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Süss-Fink, G.

S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
[CrossRef]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Tamma, V. A.

Tretyakov, S.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

Tretyakov, S. A.

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three–dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79, 045111 (2009).
[CrossRef]

Tünnermann, A.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Turczynski, S.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Vallecchi, A.

Vendik, I.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Vonlanthen, M.

S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
[CrossRef]

Wheeler, M. S.

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009).
[CrossRef]

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Wu, Q.

Wu, W.-T.

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

Xu, Y.-l.

Yan, H.

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

Yannopapas, V.

V. Yannopapas, “Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: a theoretical study,” J. Phys.: Condens. Matter 20, 255201 (2008).
[CrossRef]

V. Yannopapas, “Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies,” Appl. Phys. A 87, 259–264 (2007).
[CrossRef]

V. Yannopapas, “Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres,” Phys. Rev. B 75, 035112 (2007).
[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Zhang, Y.-J.

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

Zhong, C.-J.

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

Zhou, S.

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

Adv. Funct. Mater.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with a SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Adv. Mater.

J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, and C. J. Hawker, “Block copolymer nanolithography: translation of molecular level control to nanoscale patterns,” Adv. Mater. 21, 4769–4792 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. A

V. Yannopapas, “Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies,” Appl. Phys. A 87, 259–264 (2007).
[CrossRef]

Chem. Commun.

H. Fan, “Nanocrystal-micelle: synthesis, self-assembly and application,” Chem. Commun. , 1383–1394 (2008).
[CrossRef]

H. Yan, S. I. Lim, Y.-J. Zhang, Q. Chen, D. Mott, W.-T. Wu, D.-L. An, S. Zhou, and C.-J. Zhong, “Molecularly-mediated assembly of gold nanoparticles with interparticle rigid, conjugated and shaped aryl ethynyl structures,” Chem. Commun. 46, 2218–2220 (2010).
[CrossRef]

Helv. Chim. Acta

S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barberá, G. Süss-Fink, T. Bürgi, and R. Deschenaux, “Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles,” Helv. Chim. Acta 91, 2321–2337 (2008).
[CrossRef]

J. Phys.: Condens. Matter

V. Yannopapas, “Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: a theoretical study,” J. Phys.: Condens. Matter 20, 255201 (2008).
[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

Nature

P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns,” Nature 440, 297–302 (2006).
[CrossRef] [PubMed]

Nature (London), Phys. Sci.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature (London), Phys. Sci. 241, 20–22 (1973).

Nature Mater.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Mater. 7, 31–37 (2008).
[CrossRef]

Opt. Express

Phys. Chem. Chem. Phys.

N. Shalkevich, A. Shalkevich, L. Si-Ahmed, and T. Bürgi, “Reversible formation of gold nanoparticle–surfactant composite assemblies for the preparation of concentrated colloidal solutions,” Phys. Chem. Chem. Phys. 11, 10175–10179 (2009).
[CrossRef] [PubMed]

Phys. Rev. B

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three–dimensional metamaterial nanotips,” Phys. Rev. B 81, 075317 (2010).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79, 073103 (2009).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

V. Yannopapas, “Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres,” Phys. Rev. B 75, 035112 (2007).
[CrossRef]

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B 79, 115430 (2009).
[CrossRef]

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79, 045111 (2009).
[CrossRef]

Phys. Rev. Lett.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Science

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef] [PubMed]

Other

T. Okamoto, “Near-field spectral analysis of metallic beads,” in Near-Field Optics and Surface Plasmon Polaritons , S. Kawata, ed. (Springer, 2001), pp. 97–123.
[CrossRef]

J. D. Jackson, “Radiating systems, multipole fields and radiation,” in Classical Electrodynamics , 3rd ed. (Wiley, 1999), pp. 407–455.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmission electron micrographs of self-assembled gold nanoparticles with 17 nm diameter at different instants after having added the EGMUDE molecule [21]. (a), (b) 10 minutes and (c) 7 days after EGMUDE addition. In (a) a single supramolecular cluster can be seen (the black bar indicates 200 nm) whereas in (b) an arrangement of clusters is shown (the black bar indicates 1 μm). Panel (c) depicts the clearly ordered phase where the supramolecular clusters are dissolved (the black bar indicates 100 nm). Partly adapted from [21]. Reproduced by permission of the PCCP Owner Societies.

Fig. 2
Fig. 2

Measured UV-VIS extinction spectra for gold NPs in solution (left panel: 17 nm diameter; right panel: 40 nm diameter) before (red solid graph) and at different instants after EGMUDE addition [21]. The black arrows designate distinct resonances measured in solution; the resonance labeled by ”NP” corresponds to the LSP resonance of single NPs whereas the resonance labeled by “Cluster” corresponds to the resonance that is evoked by the supramolecular clusters [see Fig. 1 (a)].

Fig. 3
Fig. 3

Simulated extinction spectra of clusters with a spherical shape (the inset in the right panel depicts a sketch) made of gold NPs with different diameters (left panel: 17 nm; right panel 40 nm). The legend indicates the minimal distance between all the particles that form the cluster. Note that in contrast to the experimental spectra the single NP resonance is not shown here.

Fig. 4
Fig. 4

Simulated extinction spectra for structures made of gold NPs with different diameters (left panel: 17 nm; right panel 40 nm). The solid lines show the measured results from Fig. 2 (the colorbar is maintained) and the dashed lines are related to randomly arranged dimers with two distinct NP separations.

Fig. 5
Fig. 5

Simulated dipole moments (p–electric; m–magnetic) for spherical clusters (identical to Fig. 3) made of gold NPs with two different diameters (left panel: 17 nm; right panel 40 nm). The structure is illuminated by a plane wave propagating along z-direction and an x-polarized electric field.

Fig. 6
Fig. 6

Simulated effective permeability for clusters similar to Fig. 3 retrieved from the my dipole moment from Fig. 5.

Metrics