Abstract

We show numerically that the lossy side-coupled plasmonic resonators can be used as bistable switches without compensation. While the internal loss imposes on the bistable characteristics by reducing the transmission contrast and raising the input power requirement, it makes the switching more available by enlarging the width of the hysteresis loop. We also correct the nonlinear transmission formula of the resonators to adapt the lossy condition. Both the theoretical and simulation results are in good agreement.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1987).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
  5. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  6. G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev. 2(3), 125–135 (2008).
    [CrossRef]
  7. M. Soljačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
    [CrossRef]
  8. M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
    [CrossRef]
  9. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
    [CrossRef]
  10. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
    [CrossRef]
  11. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
    [CrossRef] [PubMed]
  12. Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16(12), 8421–8426 (2008).
    [CrossRef] [PubMed]
  13. Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18(1), 79–86 (2010).
    [CrossRef] [PubMed]
  14. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
    [CrossRef] [PubMed]
  15. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
    [CrossRef] [PubMed]
  16. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
    [CrossRef] [PubMed]
  17. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
    [CrossRef] [PubMed]
  18. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
    [CrossRef] [PubMed]
  19. H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).
  20. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
    [CrossRef]
  21. T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
    [CrossRef] [PubMed]
  22. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
    [CrossRef]
  23. J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99(2), 023526 (2006).
    [CrossRef]
  24. J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” J. Lightwave Technol. 14(11), 2575–2580 (1996).
    [CrossRef]

2011 (1)

2010 (1)

2009 (1)

2008 (4)

Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16(12), 8421–8426 (2008).
[CrossRef] [PubMed]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev. 2(3), 125–135 (2008).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

2006 (3)

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99(2), 023526 (2006).
[CrossRef]

2005 (2)

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[CrossRef] [PubMed]

T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
[CrossRef] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
[CrossRef]

2002 (2)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

M. Soljačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef]

1996 (1)

J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” J. Lightwave Technol. 14(11), 2575–2580 (1996).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

Chen, C.

Chen, D. J.

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99(2), 023526 (2006).
[CrossRef]

Chen, J. C.

J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” J. Lightwave Technol. 14(11), 2575–2580 (1996).
[CrossRef]

Dai, Q. F.

Deng, Y.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ding, S.

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99(2), 023526 (2006).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Eng, L.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[CrossRef] [PubMed]

Fainman, Y.

Fan, S.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” J. Lightwave Technol. 14(11), 2575–2580 (1996).
[CrossRef]

Fink, Y.

M. Soljačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef]

Fukuta, K.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Gong, Y.

Grafström, S.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[CrossRef] [PubMed]

Gray, S. K.

Hamanaka, Y.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Han, J. B.

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99(2), 023526 (2006).
[CrossRef]

Han, Y. B.

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99(2), 023526 (2006).
[CrossRef]

Haus, H. A.

J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” J. Lightwave Technol. 14(11), 2575–2580 (1996).
[CrossRef]

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

Ibanescu, M.

M. Soljačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef]

Joannopoulos, J.

M. Soljačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef]

Joannopoulos, J. D.

J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” J. Lightwave Technol. 14(11), 2575–2580 (1996).
[CrossRef]

Johnson, S.

M. Soljačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef]

Lan, S.

Lee, T. W.

Liu, X.

Liz-Marzan, L. M.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Lu, H.

Lu, Y.

Mao, D.

Massoud, Y.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

Min, C.

Ming, H.

Mulvaney, P.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Nakamura, A.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Nezhad, M.

Ning, T.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Seidel, J.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[CrossRef] [PubMed]

Shen, Y.

Soljacic, M.

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
[CrossRef]

M. Soljačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef]

Tetz, K.

Veronis, G.

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

Villeneuve, P. R.

J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” J. Lightwave Technol. 14(11), 2575–2580 (1996).
[CrossRef]

Wang, G. P.

Wang, L.

Wang, P.

Wang, Q. Q.

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99(2), 023526 (2006).
[CrossRef]

Wu, L. J.

Wurtz, G. A.

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev. 2(3), 125–135 (2008).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Xiong, G. G.

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99(2), 023526 (2006).
[CrossRef]

Xu, Y.

Yang, G.

Yanik, M. F.

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
[CrossRef]

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

Zayats, A. V.

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev. 2(3), 125–135 (2008).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Zhong, Z. J.

Zhou, H. J.

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99(2), 023526 (2006).
[CrossRef]

Zhou, Y.

Appl. Phys. Lett. (5)

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83(14), 2739–2741 (2003).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 92(4), 041117 (2008).
[CrossRef]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

J. Appl. Phys. (1)

J. B. Han, D. J. Chen, S. Ding, H. J. Zhou, Y. B. Han, G. G. Xiong, and Q. Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99(2), 023526 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” J. Lightwave Technol. 14(11), 2575–2580 (1996).
[CrossRef]

Laser Photonics Rev. (1)

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev. 2(3), 125–135 (2008).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Soljačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (4)

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmission spectra of the side coupled plasmonic resonator under the weak nonlinear condition. Inset shows the schematic model studied.

Fig. 2
Fig. 2

(a) Hysteresis loop when the interval between the waveguide and cavity is 20 nm. (b) and (c) show the transmission as a function of time when P in is 4.9W/μm and 4.5W/μm, respectively. Insets are the snapshots of the electric fields corresponding to the stable outputs before and after the Gaussian pulse, where red and blue represent respectively the positive and negative fields. All panels use the same color scale. Arrows mark the CW launch direction.

Fig. 3
Fig. 3

Hystersis loop when the interval between the waveguide and cavity is 25 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = P out P in = ( P ref P 0 δ ) 2 ( P ref P 0 δ ) 2 + 1 = ( P in P out P 0 δ ) 2 ( P in P out P 0 δ ) 2 + 1 ,
P in P out = P ref ( 1 + 2 α ) ,
T = P out P in = [ P in P out ( 1 + 2 α ) P 0 δ ] 2 + η 0 [ P in P out ( 1 + 2 α ) P 0 δ ] 2 + 1 .

Metrics