Abstract

Feedback parameter (the C factor) is an important parameter for a semiconductor laser operating in the regime of external optical feedback. Self-mixing interferometry (SMI) has been proposed for the measurement of the parameter, based on the time-domain analysis of the output power waveforms (called SMI signals) in presence of feedback. However, the existing approaches only work for a limited range of C, below about 3.5. This paper presents a new method to measure C based on analysis of the phase signal of SMI signals in the frequency domain. The proposed method covers a large range of C values, up to about 10. Simulations and experimental results are presented for verification of the proposed method.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
    [CrossRef]
  2. S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
    [CrossRef]
  3. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
    [CrossRef]
  4. N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
    [CrossRef]
  5. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
    [CrossRef]
  6. J. Xi, Y. Yu, J. F. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41(8), 1058–1064 (2005).
    [CrossRef]
  7. Y. Yu, J. Xi, J. F. Chicharo, and T. Bosch, “Toward automatic measurement of the linewidth-enhancement factor using optical feedback self-mixing interferometry with weak optical feedback,” IEEE J. Quantum Electron. 43(7), 527–534 (2007).
    [CrossRef]
  8. Y. Yu, J. Xi, J. F. Chicharo, and T. M. Bosch, “Optical feedback self-mixing interferometry with a large feedback factor C: behavior studies,” IEEE J. Quantum Electron. 45(7), 840–848 (2009).
    [CrossRef]
  9. Y. Fan, Y. Yu, J. Xi, J. Chicharo, and H. Ye, “A displacement reconstruction algorithm used for optical feedback self mixing interferometry system under different feedback levels,” Proc. SPIE 7855, 78550L, 78550L-7 (2010).
    [CrossRef]
  10. Y. Yu, J. Xi, and J. F. Chicharo, “Improving the Performance in an Optical feedback Self-mixing Interferometry System using Digital Signal Pre-processing,” in Proceedings of IEEE Conference on Intelligent Signal Processing (Institute of Electrical and Electronic Engineers, Alcala de Henares, 2007), pp. 1–6.
  11. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [CrossRef]
  12. G. Acket, D. Lenstra, A. Den Boef, and B. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20(10), 1163–1169 (1984).
    [CrossRef]
  13. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
    [CrossRef]
  14. M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
    [CrossRef]
  15. D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, “Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66(3), 277–279 (1995).
    [CrossRef]
  16. Y. Arakawa and A. Yariv, “Fermi energy dependence of linewidth enhancement factor of GaAlAs buried heterostructure lasers,” Appl. Phys. Lett. 47(9), 905–907 (1985).
    [CrossRef]
  17. L. Hua, “RF-modulation measurement of linewidth enhancement factor and nonlinear gain of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 8(12), 1594–1596 (1996).
    [CrossRef]
  18. H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004).
    [CrossRef]
  19. H. Nakajima and J. C. Bouley, “Observation of power dependent linewidth enhancement factor in 1.55 mu m strained quantum well lasers,” Electron. Lett. 27(20), 1840–1841 (1991).
    [CrossRef]
  20. G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
    [CrossRef]
  21. W.-H. Seo and J. F. Donegan, “Linewidth enhancement factor of lattice-matched InGaNAs/GaAs quantum wells,” Appl. Phys. Lett. 82(4), 505–507 (2003).
    [CrossRef]
  22. C. H. Shin, M. Teshima, and M. Ohtsu, “Novel measurement method of linewidth enhancement factor in semiconductor lasers by optical self-locking,” Electron. Lett. 25(1), 27–28 (1989).
    [CrossRef]
  23. Y. S. Shin, T. H. Yoon, J. R. Park, and C. H. Nam, “Simple methods for measuring the linewidth enhancement factor in external cavity laser diodes,” Opt. Commun. 173(1–6), 303–309 (2000).
    [CrossRef]
  24. D. Fye, “Relationship between carrier-induced index change and feedback noise in diode lasers,” IEEE J. Quantum Electron. 18(10), 1675–1678 (1982).
    [CrossRef]
  25. T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43(1), 6–15 (2007).
    [CrossRef]
  26. T. Fordell and A. M. Lindberg, “Noise correlation, regenerative amplification, and the linewidth enhancement factor of a vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(9), 667–669 (2008).
    [CrossRef]
  27. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
    [CrossRef]
  28. H. Olesen, J. Osmundsen, and B. Tromborg, “Nonlinear dynamics and spectral behavior for an external cavity laser,” IEEE J. Quantum Electron. 22(6), 762–773 (1986).
    [CrossRef]
  29. V. Annovazzi-Lodi, S. Merlo, M. Norgia, and A. Scire, “Characterization of a chaotic telecommunication laser for different fiber cavity lengths,” IEEE J. Quantum Electron. 38(9), 1171–1177 (2002).
    [CrossRef]

2010

Y. Fan, Y. Yu, J. Xi, J. Chicharo, and H. Ye, “A displacement reconstruction algorithm used for optical feedback self mixing interferometry system under different feedback levels,” Proc. SPIE 7855, 78550L, 78550L-7 (2010).
[CrossRef]

2009

Y. Yu, J. Xi, J. F. Chicharo, and T. M. Bosch, “Optical feedback self-mixing interferometry with a large feedback factor C: behavior studies,” IEEE J. Quantum Electron. 45(7), 840–848 (2009).
[CrossRef]

2008

T. Fordell and A. M. Lindberg, “Noise correlation, regenerative amplification, and the linewidth enhancement factor of a vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(9), 667–669 (2008).
[CrossRef]

2007

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43(1), 6–15 (2007).
[CrossRef]

Y. Yu, J. Xi, J. F. Chicharo, and T. Bosch, “Toward automatic measurement of the linewidth-enhancement factor using optical feedback self-mixing interferometry with weak optical feedback,” IEEE J. Quantum Electron. 43(7), 527–534 (2007).
[CrossRef]

2005

J. Xi, Y. Yu, J. F. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41(8), 1058–1064 (2005).
[CrossRef]

2004

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
[CrossRef]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004).
[CrossRef]

2003

W.-H. Seo and J. F. Donegan, “Linewidth enhancement factor of lattice-matched InGaNAs/GaAs quantum wells,” Appl. Phys. Lett. 82(4), 505–507 (2003).
[CrossRef]

2002

V. Annovazzi-Lodi, S. Merlo, M. Norgia, and A. Scire, “Characterization of a chaotic telecommunication laser for different fiber cavity lengths,” IEEE J. Quantum Electron. 38(9), 1171–1177 (2002).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

2001

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

2000

Y. S. Shin, T. H. Yoon, J. R. Park, and C. H. Nam, “Simple methods for measuring the linewidth enhancement factor in external cavity laser diodes,” Opt. Commun. 173(1–6), 303–309 (2000).
[CrossRef]

1998

N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
[CrossRef]

1996

L. Hua, “RF-modulation measurement of linewidth enhancement factor and nonlinear gain of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 8(12), 1594–1596 (1996).
[CrossRef]

1995

D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, “Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66(3), 277–279 (1995).
[CrossRef]

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[CrossRef]

1991

H. Nakajima and J. C. Bouley, “Observation of power dependent linewidth enhancement factor in 1.55 mu m strained quantum well lasers,” Electron. Lett. 27(20), 1840–1841 (1991).
[CrossRef]

1989

C. H. Shin, M. Teshima, and M. Ohtsu, “Novel measurement method of linewidth enhancement factor in semiconductor lasers by optical self-locking,” Electron. Lett. 25(1), 27–28 (1989).
[CrossRef]

1988

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

1987

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[CrossRef]

1986

H. Olesen, J. Osmundsen, and B. Tromborg, “Nonlinear dynamics and spectral behavior for an external cavity laser,” IEEE J. Quantum Electron. 22(6), 762–773 (1986).
[CrossRef]

1985

Y. Arakawa and A. Yariv, “Fermi energy dependence of linewidth enhancement factor of GaAlAs buried heterostructure lasers,” Appl. Phys. Lett. 47(9), 905–907 (1985).
[CrossRef]

1984

G. Acket, D. Lenstra, A. Den Boef, and B. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20(10), 1163–1169 (1984).
[CrossRef]

1982

D. Fye, “Relationship between carrier-induced index change and feedback noise in diode lasers,” IEEE J. Quantum Electron. 18(10), 1675–1678 (1982).
[CrossRef]

1980

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

Acket, G.

G. Acket, D. Lenstra, A. Den Boef, and B. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20(10), 1163–1169 (1984).
[CrossRef]

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, S. Merlo, M. Norgia, and A. Scire, “Characterization of a chaotic telecommunication laser for different fiber cavity lengths,” IEEE J. Quantum Electron. 38(9), 1171–1177 (2002).
[CrossRef]

Arakawa, Y.

Y. Arakawa and A. Yariv, “Fermi energy dependence of linewidth enhancement factor of GaAlAs buried heterostructure lasers,” Appl. Phys. Lett. 47(9), 905–907 (1985).
[CrossRef]

Bosch, T.

Y. Yu, J. Xi, J. F. Chicharo, and T. Bosch, “Toward automatic measurement of the linewidth-enhancement factor using optical feedback self-mixing interferometry with weak optical feedback,” IEEE J. Quantum Electron. 43(7), 527–534 (2007).
[CrossRef]

J. Xi, Y. Yu, J. F. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41(8), 1058–1064 (2005).
[CrossRef]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
[CrossRef]

Bosch, T. M.

Y. Yu, J. Xi, J. F. Chicharo, and T. M. Bosch, “Optical feedback self-mixing interferometry with a large feedback factor C: behavior studies,” IEEE J. Quantum Electron. 45(7), 840–848 (2009).
[CrossRef]

Bouley, J. C.

H. Nakajima and J. C. Bouley, “Observation of power dependent linewidth enhancement factor in 1.55 mu m strained quantum well lasers,” Electron. Lett. 27(20), 1840–1841 (1991).
[CrossRef]

Buus, J.

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[CrossRef]

Chicharo, J.

Y. Fan, Y. Yu, J. Xi, J. Chicharo, and H. Ye, “A displacement reconstruction algorithm used for optical feedback self mixing interferometry system under different feedback levels,” Proc. SPIE 7855, 78550L, 78550L-7 (2010).
[CrossRef]

Chicharo, J. F.

Y. Yu, J. Xi, J. F. Chicharo, and T. M. Bosch, “Optical feedback self-mixing interferometry with a large feedback factor C: behavior studies,” IEEE J. Quantum Electron. 45(7), 840–848 (2009).
[CrossRef]

Y. Yu, J. Xi, J. F. Chicharo, and T. Bosch, “Toward automatic measurement of the linewidth-enhancement factor using optical feedback self-mixing interferometry with weak optical feedback,” IEEE J. Quantum Electron. 43(7), 527–534 (2007).
[CrossRef]

J. Xi, Y. Yu, J. F. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41(8), 1058–1064 (2005).
[CrossRef]

Chuang, S. L.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

Den Boef, A.

G. Acket, D. Lenstra, A. Den Boef, and B. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20(10), 1163–1169 (1984).
[CrossRef]

Donati, S.

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[CrossRef]

Donegan, J. F.

W.-H. Seo and J. F. Donegan, “Linewidth enhancement factor of lattice-matched InGaNAs/GaAs quantum wells,” Appl. Phys. Lett. 82(4), 505–507 (2003).
[CrossRef]

Fan, Y.

Y. Fan, Y. Yu, J. Xi, J. Chicharo, and H. Ye, “A displacement reconstruction algorithm used for optical feedback self mixing interferometry system under different feedback levels,” Proc. SPIE 7855, 78550L, 78550L-7 (2010).
[CrossRef]

Feld, S.

D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, “Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66(3), 277–279 (1995).
[CrossRef]

Fordell, T.

T. Fordell and A. M. Lindberg, “Noise correlation, regenerative amplification, and the linewidth enhancement factor of a vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(9), 667–669 (2008).
[CrossRef]

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43(1), 6–15 (2007).
[CrossRef]

Fye, D.

D. Fye, “Relationship between carrier-induced index change and feedback noise in diode lasers,” IEEE J. Quantum Electron. 18(10), 1675–1678 (1982).
[CrossRef]

Giuliani, G.

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
[CrossRef]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[CrossRef]

Gouaux, F.

N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
[CrossRef]

Halbritter, H.

H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004).
[CrossRef]

Hua, L.

L. Hua, “RF-modulation measurement of linewidth enhancement factor and nonlinear gain of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 8(12), 1594–1596 (1996).
[CrossRef]

Jacquet, J.

H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004).
[CrossRef]

Jin, X.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

Kuksenkov, D.

D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, “Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66(3), 277–279 (1995).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

Leibenguth, R.

D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, “Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66(3), 277–279 (1995).
[CrossRef]

Lenstra, D.

G. Acket, D. Lenstra, A. Den Boef, and B. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20(10), 1163–1169 (1984).
[CrossRef]

Lindberg, A. M.

T. Fordell and A. M. Lindberg, “Noise correlation, regenerative amplification, and the linewidth enhancement factor of a vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(9), 667–669 (2008).
[CrossRef]

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43(1), 6–15 (2007).
[CrossRef]

Liu, G.

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

Meissner, P.

H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004).
[CrossRef]

Merlo, S.

V. Annovazzi-Lodi, S. Merlo, M. Norgia, and A. Scire, “Characterization of a chaotic telecommunication laser for different fiber cavity lengths,” IEEE J. Quantum Electron. 38(9), 1171–1177 (2002).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[CrossRef]

Nakajima, H.

H. Nakajima and J. C. Bouley, “Observation of power dependent linewidth enhancement factor in 1.55 mu m strained quantum well lasers,” Electron. Lett. 27(20), 1840–1841 (1991).
[CrossRef]

Nam, C. H.

Y. S. Shin, T. H. Yoon, J. R. Park, and C. H. Nam, “Simple methods for measuring the linewidth enhancement factor in external cavity laser diodes,” Opt. Commun. 173(1–6), 303–309 (2000).
[CrossRef]

Norgia, M.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

V. Annovazzi-Lodi, S. Merlo, M. Norgia, and A. Scire, “Characterization of a chaotic telecommunication laser for different fiber cavity lengths,” IEEE J. Quantum Electron. 38(9), 1171–1177 (2002).
[CrossRef]

Ohtsu, M.

C. H. Shin, M. Teshima, and M. Ohtsu, “Novel measurement method of linewidth enhancement factor in semiconductor lasers by optical self-locking,” Electron. Lett. 25(1), 27–28 (1989).
[CrossRef]

Olesen, H.

H. Olesen, J. Osmundsen, and B. Tromborg, “Nonlinear dynamics and spectral behavior for an external cavity laser,” IEEE J. Quantum Electron. 22(6), 762–773 (1986).
[CrossRef]

Osinski, M.

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[CrossRef]

Osmundsen, J.

H. Olesen, J. Osmundsen, and B. Tromborg, “Nonlinear dynamics and spectral behavior for an external cavity laser,” IEEE J. Quantum Electron. 22(6), 762–773 (1986).
[CrossRef]

Park, J. R.

Y. S. Shin, T. H. Yoon, J. R. Park, and C. H. Nam, “Simple methods for measuring the linewidth enhancement factor in external cavity laser diodes,” Opt. Commun. 173(1–6), 303–309 (2000).
[CrossRef]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[CrossRef]

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

Plantier, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

Provost, J. G.

H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004).
[CrossRef]

Riemenschneider, F.

H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004).
[CrossRef]

Sagnes, I.

H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004).
[CrossRef]

Scalise, L.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

Schunk, N.

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

Scire, A.

V. Annovazzi-Lodi, S. Merlo, M. Norgia, and A. Scire, “Characterization of a chaotic telecommunication laser for different fiber cavity lengths,” IEEE J. Quantum Electron. 38(9), 1171–1177 (2002).
[CrossRef]

Seo, W.-H.

W.-H. Seo and J. F. Donegan, “Linewidth enhancement factor of lattice-matched InGaNAs/GaAs quantum wells,” Appl. Phys. Lett. 82(4), 505–507 (2003).
[CrossRef]

Servagent, N.

N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
[CrossRef]

Shin, C. H.

C. H. Shin, M. Teshima, and M. Ohtsu, “Novel measurement method of linewidth enhancement factor in semiconductor lasers by optical self-locking,” Electron. Lett. 25(1), 27–28 (1989).
[CrossRef]

Shin, Y. S.

Y. S. Shin, T. H. Yoon, J. R. Park, and C. H. Nam, “Simple methods for measuring the linewidth enhancement factor in external cavity laser diodes,” Opt. Commun. 173(1–6), 303–309 (2000).
[CrossRef]

Swirhun, S.

D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, “Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66(3), 277–279 (1995).
[CrossRef]

Symonds, C.

H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004).
[CrossRef]

Temkin, H.

D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, “Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66(3), 277–279 (1995).
[CrossRef]

Teshima, M.

C. H. Shin, M. Teshima, and M. Ohtsu, “Novel measurement method of linewidth enhancement factor in semiconductor lasers by optical self-locking,” Electron. Lett. 25(1), 27–28 (1989).
[CrossRef]

Tromborg, B.

H. Olesen, J. Osmundsen, and B. Tromborg, “Nonlinear dynamics and spectral behavior for an external cavity laser,” IEEE J. Quantum Electron. 22(6), 762–773 (1986).
[CrossRef]

Verbeek, B.

G. Acket, D. Lenstra, A. Den Boef, and B. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20(10), 1163–1169 (1984).
[CrossRef]

Wilmsen, C.

D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, “Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66(3), 277–279 (1995).
[CrossRef]

Xi, J.

Y. Fan, Y. Yu, J. Xi, J. Chicharo, and H. Ye, “A displacement reconstruction algorithm used for optical feedback self mixing interferometry system under different feedback levels,” Proc. SPIE 7855, 78550L, 78550L-7 (2010).
[CrossRef]

Y. Yu, J. Xi, J. F. Chicharo, and T. M. Bosch, “Optical feedback self-mixing interferometry with a large feedback factor C: behavior studies,” IEEE J. Quantum Electron. 45(7), 840–848 (2009).
[CrossRef]

Y. Yu, J. Xi, J. F. Chicharo, and T. Bosch, “Toward automatic measurement of the linewidth-enhancement factor using optical feedback self-mixing interferometry with weak optical feedback,” IEEE J. Quantum Electron. 43(7), 527–534 (2007).
[CrossRef]

J. Xi, Y. Yu, J. F. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41(8), 1058–1064 (2005).
[CrossRef]

Yariv, A.

Y. Arakawa and A. Yariv, “Fermi energy dependence of linewidth enhancement factor of GaAlAs buried heterostructure lasers,” Appl. Phys. Lett. 47(9), 905–907 (1985).
[CrossRef]

Ye, H.

Y. Fan, Y. Yu, J. Xi, J. Chicharo, and H. Ye, “A displacement reconstruction algorithm used for optical feedback self mixing interferometry system under different feedback levels,” Proc. SPIE 7855, 78550L, 78550L-7 (2010).
[CrossRef]

Yoon, T. H.

Y. S. Shin, T. H. Yoon, J. R. Park, and C. H. Nam, “Simple methods for measuring the linewidth enhancement factor in external cavity laser diodes,” Opt. Commun. 173(1–6), 303–309 (2000).
[CrossRef]

Yu, Y.

Y. Fan, Y. Yu, J. Xi, J. Chicharo, and H. Ye, “A displacement reconstruction algorithm used for optical feedback self mixing interferometry system under different feedback levels,” Proc. SPIE 7855, 78550L, 78550L-7 (2010).
[CrossRef]

Y. Yu, J. Xi, J. F. Chicharo, and T. M. Bosch, “Optical feedback self-mixing interferometry with a large feedback factor C: behavior studies,” IEEE J. Quantum Electron. 45(7), 840–848 (2009).
[CrossRef]

Y. Yu, J. Xi, J. F. Chicharo, and T. Bosch, “Toward automatic measurement of the linewidth-enhancement factor using optical feedback self-mixing interferometry with weak optical feedback,” IEEE J. Quantum Electron. 43(7), 527–534 (2007).
[CrossRef]

J. Xi, Y. Yu, J. F. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41(8), 1058–1064 (2005).
[CrossRef]

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
[CrossRef]

Appl. Phys. Lett.

D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, “Linewidth and alpha-factor in AlGaAs/GaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66(3), 277–279 (1995).
[CrossRef]

Y. Arakawa and A. Yariv, “Fermi energy dependence of linewidth enhancement factor of GaAlAs buried heterostructure lasers,” Appl. Phys. Lett. 47(9), 905–907 (1985).
[CrossRef]

W.-H. Seo and J. F. Donegan, “Linewidth enhancement factor of lattice-matched InGaNAs/GaAs quantum wells,” Appl. Phys. Lett. 82(4), 505–507 (2003).
[CrossRef]

Electron. Lett.

C. H. Shin, M. Teshima, and M. Ohtsu, “Novel measurement method of linewidth enhancement factor in semiconductor lasers by optical self-locking,” Electron. Lett. 25(1), 27–28 (1989).
[CrossRef]

H. Halbritter, F. Riemenschneider, J. Jacquet, J. G. Provost, C. Symonds, I. Sagnes, and P. Meissner, “Chirp and linewidth enhancement factor of tunable, optically-pumped long wavelength VCSEL,” Electron. Lett. 40(4), 242–244 (2004).
[CrossRef]

H. Nakajima and J. C. Bouley, “Observation of power dependent linewidth enhancement factor in 1.55 mu m strained quantum well lasers,” Electron. Lett. 27(20), 1840–1841 (1991).
[CrossRef]

IEEE J. Quantum Electron.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

G. Acket, D. Lenstra, A. Den Boef, and B. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20(10), 1163–1169 (1984).
[CrossRef]

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers–An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31(1), 113–119 (1995).
[CrossRef]

J. Xi, Y. Yu, J. F. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41(8), 1058–1064 (2005).
[CrossRef]

Y. Yu, J. Xi, J. F. Chicharo, and T. Bosch, “Toward automatic measurement of the linewidth-enhancement factor using optical feedback self-mixing interferometry with weak optical feedback,” IEEE J. Quantum Electron. 43(7), 527–534 (2007).
[CrossRef]

Y. Yu, J. Xi, J. F. Chicharo, and T. M. Bosch, “Optical feedback self-mixing interferometry with a large feedback factor C: behavior studies,” IEEE J. Quantum Electron. 45(7), 840–848 (2009).
[CrossRef]

D. Fye, “Relationship between carrier-induced index change and feedback noise in diode lasers,” IEEE J. Quantum Electron. 18(10), 1675–1678 (1982).
[CrossRef]

T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 43(1), 6–15 (2007).
[CrossRef]

N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988).
[CrossRef]

H. Olesen, J. Osmundsen, and B. Tromborg, “Nonlinear dynamics and spectral behavior for an external cavity laser,” IEEE J. Quantum Electron. 22(6), 762–773 (1986).
[CrossRef]

V. Annovazzi-Lodi, S. Merlo, M. Norgia, and A. Scire, “Characterization of a chaotic telecommunication laser for different fiber cavity lengths,” IEEE J. Quantum Electron. 38(9), 1171–1177 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004).
[CrossRef]

G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001).
[CrossRef]

L. Hua, “RF-modulation measurement of linewidth enhancement factor and nonlinear gain of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 8(12), 1594–1596 (1996).
[CrossRef]

T. Fordell and A. M. Lindberg, “Noise correlation, regenerative amplification, and the linewidth enhancement factor of a vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(9), 667–669 (2008).
[CrossRef]

IEEE Trans. Instrum. Meas.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: Application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
[CrossRef]

J. Opt.

N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Opt. Commun.

Y. S. Shin, T. H. Yoon, J. R. Park, and C. H. Nam, “Simple methods for measuring the linewidth enhancement factor in external cavity laser diodes,” Opt. Commun. 173(1–6), 303–309 (2000).
[CrossRef]

Proc. SPIE

Y. Fan, Y. Yu, J. Xi, J. Chicharo, and H. Ye, “A displacement reconstruction algorithm used for optical feedback self mixing interferometry system under different feedback levels,” Proc. SPIE 7855, 78550L, 78550L-7 (2010).
[CrossRef]

Other

Y. Yu, J. Xi, and J. F. Chicharo, “Improving the Performance in an Optical feedback Self-mixing Interferometry System using Digital Signal Pre-processing,” in Proceedings of IEEE Conference on Intelligent Signal Processing (Institute of Electrical and Electronic Engineers, Alcala de Henares, 2007), pp. 1–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic SMI.

Fig. 2
Fig. 2

Hysteresis phenomenon of SMI signal and the measurement principle on αin [20] with C = 2 and α = 5 .

Fig. 3
Fig. 3

Waveforms and spectra of signals ϕ 0 ( t ) , C ϕ 1 ( t ) , and ϕ F ( t ) for sinusoidal case with C=5 and α=3.

Fig. 4
Fig. 4

Detailed spectra of signals ϕ 0 ( t ) , ϕ 1 ( t ) , and ϕ F ( t ) for the sinusoidal case.

Fig. 5
Fig. 5

Waveforms and spectra of signals ϕ 0 ( t ) , C ϕ 1 ( t ) , and ϕ F ( t ) for the triangular case.

Fig. 6
Fig. 6

Detailed spectra of signals ϕ 0 ( t ) , ϕ 1 ( t ) , and ϕ F ( t ) for triangular case.

Fig. 7
Fig. 7

Experimental SMI signals with different C values [8].

Fig. 8
Fig. 8

Measurement process for the experimental signal shown in Fig. 7(c) using the proposed method.

Tables (4)

Tables Icon

Table 1 Definition of the variables in Eq. (1)(3)

Tables Icon

Table 2 Estimated C Values Using Method in [1] and Proposed Method in this Paper

Tables Icon

Table 3 Influence of αon the Estimation of C

Tables Icon

Table 4 Estimated C Values Using Experimental Signals

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ϕ F = ϕ 0 C s i n [ ϕ F + arctan ( α ) ] ,
g ( ϕ 0 ) = cos ( ϕ F ) ,
P ( ϕ 0 ) = P 0 [ 1 + m × g ( ϕ 0 ) ] .
ϕ 0 , A B = 2 { C 2 1 + arccos ( 1 C ) π } .
C = η τ τ S L ( 1 R 2 ) R 3 R 2 1 + α 2 ,
g ( t ) = cos ( ϕ F ( t ) ) ,
ϕ F ( t ) = ϕ 0 ( t ) C s i n { ϕ F ( t ) + arctan ( α ) } .
Φ F ( f ) = Φ 0 ( f ) C F { sin [ ϕ F ( t ) + arctan ( α ) ] } ,
ϕ 1 ( t ) = sin { ϕ F ( t ) + arctan ( α ) } ,
Φ F ( f ) = Φ 0 ( f ) C F { ϕ 1 ( t ) } = Φ 0 ( f ) C Φ 1 ( f ) ,
Ω 1 : f { Φ F ( f ) 0 , Φ 1 ( f ) 0 , Φ 0 ( f ) 0 } ,   and
Ω 2 : f { Φ F ( f ) 0 , Φ 1 ( f ) 0 , Φ 0 ( f ) = 0 } .
Φ F ( f ) = C × Φ 1 ( f ) , f Ω 2 .
C = | Φ F ( f ) | | Φ 1 ( f ) | , f Ω 2 .
C = f Ω 2 | Φ F ( f ) | f Ω 2 | Φ 1 ( f ) | .
ϕ 0 ( t ) = φ 0 + Δ φ sin ( 2 π f 0 t ) ,

Metrics